Virbactd.ru

Авто шины и диски
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения

И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме [1] , то есть регулирующий элемент периодически открывается и закрывается.

Энергия первичного источника питания передаётся через регулирующий элемент определёнными порциями, заданными контуром регулирования так, чтобы стабильным было среднее значение выходного напряжения. Сглаживание пульсаций выходного напряжения происходит благодаря наличию элемента (или сочетания элементов), способного накапливать электрическую энергию и отдавать её в нагрузку.

Импульсный стабилизатор напряжения по сравнению с линейным стабилизатором имеет меньшие потери энергии на нагрев регулирующего элемента, что повышает КПД стабилизатора и позволяет применять регулирующий элемент меньшей мощности, а радиатор меньших размеров и массы.

Содержание

Сравнение с линейным стабилизатором [ править | править код ]

  • высокий КПД, особенно при работе в большом диапазоне входных напряжений [2] ;
  • малые габариты и масса (высокая удельная мощность) [2] ;
  • принципиальная возможность гальванической развязки входных и выходных цепей, при работе от промышленной сети переменного тока не требуется использование имеющего большие габариты и вес трансформатора, рассчитанного на частоту 50/60 Гц [2] .
  • импульсные помехи во входных и выходных цепях [2]  — как дифференциальные (противофазные), так и помехи общего вида (синфазные помехи) [3][4] ;
  • более высокая нестабильность выходного напряжения при изменении входного напряжения или тока нагрузки [2] ;
  • более длительные переходные процессы (большее время восстановления выходного напряжения после скачкообразного изменения входного напряжения или тока нагрузки) [2] ;
  • входное отрицательное дифференциальное сопротивление — входной ток увеличивается при уменьшении входного напряжения; если импеданс первичного источника напряжения (включая входные вспомогательные цепи самого импульсного преобразователя) выше отрицательного импеданса импульсного преобразователя, то возникают автоколебания с нарушением работоспособности и возможным повреждением стабилизатора [4][5][6] .

Функциональные схемы по типу цепи управления [ править | править код ]

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром [7] ) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть [8] стабилизатора напряжения [⇨] , которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта [ править | править код ]

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием [9] . В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки [10] .

С широтно-импульсной модуляцией [ править | править код ]

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку. В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности [11] импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3). Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора [10] .

С частотно-импульсной модуляцией [ править | править код ]

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Основные схемы силовой части [ править | править код ]

По схеме силовой части импульсные стабилизаторы делят обычно на три основных типа: понижающие, повышающие и инвертирующие [8] . Такое разделение сложилось, в частности, в отечественной технической литературе [12] .

Некоторые авторы, рассматривая схемы импульсных преобразователей постоянного напряжения во всём их многообразии, показывают, что число элементарных базовых схем преобразователя можно свести к двум [13]  — понижающего типа и повышающего типа. Также отмечается, что другие схемы импульсного преобразователя напряжения (в том числе инвертирующего преобразователя [14] ) могут быть получены каскадным соединением этих двух базовых схем [15] [ неавторитетный источник? ] [16] .

В нижеприведённых схемах в качестве ключа S могут использоваться полевой транзистор, биполярный транзистор или тиристор, цепь управления ключом для простоты не показана. Отношение времени замкнутого состояния ключа к сумме длительностей замкнутого и разомкнутого состояний называют коэффициентом заполнения (или рабочим циклом — англ.  duty cycle ) [2] .

Преобразователь с понижением напряжения [ править | править код ]

Названия в англоязычной литературе — buck converter (step-down converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D, при этом величина тока уменьшается. При достаточной индуктивности ток дросселя не успевает уменьшиться до нуля к началу следующего цикла (режим неразрывных токов) и имеет пульсирующий характер. Поэтому даже при отсутствии конденсатора C напряжение на нагрузке R будет иметь такой же характер с пульсациями, размах которых тем меньше, чем больше индуктивность дросселя. Однако, на практике увеличение индуктивности связано с увеличением габаритов, массы и стоимости дросселя и потерь мощности в нём, поэтому использование конденсатора для уменьшения пульсаций более эффективно. Сочетание элементов L и C в этой схеме часто называют фильтром [10] [17] .

Преобразователь с повышением напряжения [ править | править код ]

Названия в англоязычной литературе — boost converter (step-up converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D и конденсатор C (заряжая его). К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора. В отличие от предыдущей схемы, здесь дроссель не является элементом фильтра. Напряжение на нагрузке всегда больше напряжения источника [10] [18] .

Читайте так же:
Синхронизация дизель генератора с сетью

Инвертирующий преобразователь [ править | править код ]

Название в англоязычной литературе — buck-boost converter (то есть «понижающе-повышающий преобразователь»). Основное отличие от предыдущей схемы состоит в том, что цепь D, R, C подключена параллельно дросселю, а не параллельно ключу. Принцип работы схемы похожий. Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через конденсатор C (заряжая его) и диод D. К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора (дроссель не является элементом фильтра). Напряжение на нагрузке может быть как больше, так и меньше напряжения источника [10] [19] .

Влияние диода на КПД [ править | править код ]

Прямое падение напряжения для обычных кремниевых диодов составляет около 0,7 В, для диодов Шоттки — около 0,4 В. Мощность, рассеиваемая в диоде при больших токах, существенно снижает КПД, особенно в стабилизаторах с низким выходным напряжением. Поэтому в таких стабилизаторах диод часто заменяют дополнительным полупроводниковым ключом с низким падением напряжения в открытом состоянии, например, силовым полевым транзистором.

Во всех трёх описанных схемах диод D может быть заменён на дополнительный ключ [20] , замыкаемый и размыкаемый в противофазе к основному ключу.

Гальваническая развязка [ править | править код ]

Если требуется гальваническая развязка входных и выходных цепей импульсного стабилизатора — например, по требованиям электробезопасности при использовании промышленной сети переменного тока в качестве первичного источника питания — можно применить разделительный трансформатор в рассмотренных выше основных схемах. Использование высокочастотного трансформатора в схеме преобразователя с понижением напряжения приводит к схеме однотактного или двухтактного прямоходового преобразователя (англ.  forward converter ). Замена дросселя в схеме инвертирующего преобразователя на дроссель с двумя или более обмотками приводит [21] к схеме обратноходового преобразователя (англ.  flyback converter ).

Некоторые особенности импульсных преобразователей с гальванической развязкой входа от выхода:

  • Благодаря высокой рабочей частоте преобразования (от 20 кГц до 1 МГц [2] ) габаритные размеры развязывающего трансформатора или многообмоточного дросселя значительно меньше, чем трансформатора для частоты 50 Гц.
  • В цепи управления применяется либо оптрон, либо отдельная обмотка в трансформаторе (или дросселе), либо специальный трансформатор.

Особенности использования [ править | править код ]

Фильтрация импульсных помех [ править | править код ]

Импульсный стабилизатор напряжения является источником высокочастотных помех в связи с тем, что содержит ключи, коммутирующие ток [22] . Поэтому в моменты коммутации возникают довольно значительные броски напряжения и тока, порождающие помехи как на входе, так и на выходе стабилизатора, причём помехи и противофазные, и синфазные [3] . Фильтры для подавления помех устанавливаются как на входе, так и на выходе стабилизатора.

Для снижения помех можно производить коммутацию ключа в моменты, когда через ключ нет тока при размыкании, или на ключе нулевое напряжение при замыкании. Этот приём используют в так называемых резонансных преобразователях, которые также имеют свои недостатки [23] [24] .

Входное сопротивление [ править | править код ]

Импульсный стабилизатор напряжения под нагрузкой имеет входное отрицательное дифференциальное сопротивление — при повышении входного напряжения входной ток уменьшается, и наоборот. Это следует учитывать для сохранения устойчивости работы импульсного стабилизатора напряжения от источника с повышенным внутренним сопротивлением [4] [6] .

Использование в сетях переменного тока [ править | править код ]

Рассмотренные выше импульсные стабилизаторы (преобразователи) напряжения преобразуют постоянный ток на входе в постоянный ток на выходе. Для питания устройств от электрической сети переменного тока на входе устанавливается выпрямитель и сглаживающий фильтр.

Это предполагает наличие некоторого количества элементов, установленных до развязывающего трансформатора, а значит, гальванически связанных с входными цепями. Такие элементы обычно выделяются на платах либо штриховкой, либо чертой на слое сеткографической маркировки, или даже особой окраской, которая предупреждает человека о потенциальной опасности прикосновения к ним. Импульсные блоки питания в составе других приборов (телевизоров, компьютеров) закрываются защитными крышками, снабжёнными предупреждающими надписями. Если при ремонте импульсного блока питания необходимо включить его со снятой крышкой, рекомендуется включать его через развязывающий трансформатор или УЗО.

Часто помехоподавляющие фильтры на входе импульсных блоков питания соединяются с корпусом прибора. Это делается в том случае, если предполагается подключение защитного заземления корпуса. Если защитным заземлением пренебрегли, то на корпусе прибора образуется потенциал относительно земли, равный половине сетевого напряжения. Конденсаторы фильтров, как правило, имеют небольшую ёмкость, поэтому прикосновение к корпусу такого прибора неопасно для человека, но одновременное прикосновение чувствительными частями тела к заземленным приборам и к незаземленному корпусу ощутимо (говорят, что прибор «кусается»). Кроме того потенциал на корпусе может быть опасен для самого прибора.

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме [1] , то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.

Содержание

Разновидности

  • Понижающие
  • Повышающие
  • С произвольным изменением напряжения
  • Инвертирующие
  • На полевых транзисторах
  • На тиристорах
  • На биполярных транзисторах
  • на основе широтно-импульсной модуляции
  • двухпозиционные (или релейные)

Принцип действия

Важнейшими элементами импульсного источника питания являются ключ — устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Простейшим примером такого элемента может служить конденсатор, перед которым включено некоторое ненулевое сопротивление (в качестве которого может служить, к примеру, внутреннее сопротивление источника питания) [замечание 1] .

  1. Конденсатор взят для наглядности, но в реальных схемах КПД такого преобразователя мал, и не превышает КПД линейных регуляторов, т.к. много энергии рассеивается на упомянутом сопротивлении, или излучается в виде электромагнитной энергии (см. «Two Capacitors Paradox»). Схемы, позволяющие достичь более высокого КПД описаны ниже.

Ключевой с триггером Шмитта

Несколько иначе устроен ключевой стабилизатор напряжения с триггером Шмитта (называемый также релейным или стабилизатором с двухпозиционным регулированием [2] ). В нём, при замкнутом ключе (1), входное напряжение поступает через ключевой элемент на накопитель (2), а выходное напряжение сравнивается с минимально допустимым напряжением и максимально допустимым напряжением в компараторе (4), который является входной составной частью инвертирующего триггера Шмитта (4)-(3). Как только выходное напряжение превышает максимально допустимое напряжение Umax, инвертирующий триггер Шмитта переключается в «0» и закрывает ключ (1). Накопитель разряжается, пока напряжение на нём не упадёт ниже минимально допустимого напряжения Umin, после чего инвертирующий триггер Шмитта переключается в «1», ключ снова открывается и процесс повторяется.
В середине диапазона стабилизации от Umin до Umax состояние ключа не изменяется.
Напряжения сравнения Umin и Umax формируются из опорного напряжения (5), при применении простого триггера Шмитта без обратной связи простыми делителями напряжения, а при применении более сложного триггера Шмитта с обратной связью более сложными для расчёта Umin и Umax цепями.

Читайте так же:
Как регулировать клапан на 8 клапанной 2110

Такой стабилизатор прост по конструкции, частота замыкания/размыкания ключа в нём определяется суммой постоянных времени заряда и разряда накопителя (объекта управления) и разницей между максимально допустимым и минимально допустимым напряжениями и, при постоянной нагрузке, постоянна.

При двухпозиционном регулировании возможно использование не всех видов преобразований: например, невозможно использование описанного ниже повышающего преобразователя.

Ключевой с широтно-импульсной модуляцией

На рисунке изображена функциональная схема ключевого стабилизатора напряжения с широтно-импульсной модуляцией (ШИМ).

Когда ключ (1) замкнут, входное напряжение Ui через ключ поступает на интегратор (2). Интегратор накапливает энергию, подаваемую с ключа и отдаёт её в нагрузку, когда ключ разомкнут. В результате на выходе имеем усреднённое значение напряжения, которое зависит от входного напряжения и скважности импульсов, зависящей от частоты генератора и ёмкости конденсатора. Вычитатель-усилитель на операционном усилителе (4) вычитает из выходного напряжения напряжение сравнения (6) и усиливает разность. Усиленная разница поступает на модулятор (3). В модуляторе компаратор преобразует импульсы генератора (5) в прямоугольные импульсы, отклонение скважности которых от среднего значения, равного 2, пропорционально разности между выходным напряжением и напряжением сравнения. Поэтому, ключевой стабилизатор напряжения с ШИМ, при малых отклонениях выходного напряжения от напряжения сравнения работает как пропорциональный регулятор (П-регулятор). Обычно генератор выдаёт треугольные или пилообразные импульсы, которые преобразуются в прямоугольные с помощью порогового элемента с регулируемым порогом срабатывания (компаратора). Прямоугольные импульсы с выхода модулятора управляют замыканием и размыканием ключа (1).

При малых отклонениях выходного напряжения от напряжения сравнения скважность близка к 2, а частота работы ключа близка к частоте генератора модулятора. Ключ (транзистор) работает в наиболее благоприятном частотном режиме.

При больших отклонениях выходного напряжения от напряжения сравнения скважность приближается к 0или к infty, эквивалентная частота работы ключа в начале периода или в конце периода приближается к infty, ключ (транзистор) работает в наихудшем частотном режиме, в котором чаще всего и выходит из строя, затем ключ (транзистор) переходит в благоприятные, полностью открытое или в полностью закрытое состояние.

Диапазон частот

В отличие от блоков питания с сетевым трансформатором, импульсные блоки питания могут работать при достаточно высокой частоте преобразования. Повышение частоты позволяет уменьшить габариты и массу устройства. С верхней стороны диапазон частот преобразователей ограничивается требованиями ограничения источников помех для работы радиочастотной аппаратуры.

Обычно диапазон частот преобразователей составляет 20..80 кГц. При выборе частоты работы ключевых и ШИМ-стабилизаторов необходимо учитывать высшие гармоники токов.

Преобразователи на основе дросселя

Стабилизаторы с ёмкостным накопителем не получили широкого распространения, так как они хорошо работают только при достаточно большом внутреннем сопротивлении первичного источника. Такая ситуация возникает достаточно редко, т. к. внутреннее сопротивление источников питания стараются уменьшить, для отдачи большей мощности в нагрузку и меньших потерь энергии в источнике (например, внутреннее сопротивление бытовой сети электроснабжения в жилых помещениях составляет обычно от 0,05 Ом до 1 Ом). При работе от источника с маленьким внутренним сопротивлением в качестве накопителя энергии целесообразно использовать дроссель, либо более сложные комбинации дросселей и конденсаторов. Рассмотрим некоторые простые разновидности преобразователя.

Преобразователь с понижением напряжения

Кроме ключа S и дросселя L содержит диод D и конденсатор C. Когда ключ S замыкается, ток от источника течёт через дроссель L и нагрузку. ЭДС самоиндукции дросселя приложена обратно напряжению источника тока. В результате напряжение на нагрузке равно разности напряжения источника питания и ЭДС самоиндукции дросселя, ток через дроссель растёт, как и напряжение на конденсаторе C и нагрузке. При разомкнутом ключе S ток продолжает протекать через дроссель в том же направлении через диод D и нагрузку, а также конденсатор C. ЭДС самоиндукции приложена к нагрузке R через диод D, ток через дроссель постепенно уменьшается, как и напряжение на конденсаторе C и на нагрузке [3] .

Преобразователь с повышением напряжения

В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S [4] .

Возможно также совмещение этой схемы с предыдущей, что позволяет произвольно изменять величину выходного напряжения: как повышать, так и понижать. Для этого перед дросселем устанавливаются диод и ключ, как в предыдущей схеме.

Инвертирующий преобразователь

В нём дроссель подключен параллельно источнику и нагрузке. Когда ключ S замкнут, ток от источника течёт через дроссель и быстро растёт. Когда ключ размыкается, ток продолжает течь через нагрузку R и диод D. ЭДС самоиндукции дросселя приложена в обратную сторону, по сравнению с напряжением источника. Поэтому напряжение к нагрузке также приложено в обратном направлении. Когда ключ S замкнут — диод D закрывается, а нагрузка питается зарядом конденсатора C [5] .

Во всех трёх схемах диод D может быть заменён на ключ [6] , замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем см. синхронное выпрямление (англ.)

Другие разновидности

Существуют другие разновидности импульсных преобразователей напряжения, использующихся в стабилизаторах. Например, такие преобразователи, как Обратноходовый преобразователь и Двухтактный преобразователь имеют индуктивную развязку выходных цепей, что позволяет питать с их помощью устройства, для которых недопустима гальваническая связь с питающей сетью.

Резонансный преобразователь имеет наилучшие условия работы ключей, что позволяет строить на его основе преобразователи большой мощности (до десятков киловатт) с достаточно высоким КПД. [7] [8] Однако его недостатком является сложность проектирования, что мешает его широкому распространению.

Квазирезонансный преобразователь обладает значительно более высоким КПД по сравнению с широтно-импусными модуляторами, благодаря чему обеспечивается минимальное энергопотребление в дежурном режиме и низкое тепловыделение в рабочем. Выходное напряжение БП регулируется за счет изменения частоты работы преобразователя. [9]

Читайте так же:
Регулировка подшипников колес мото урал

Особенности использования

Фильтрация импульсных помех

Импульсный стабилизатор напряжения является источником высокочастотных помех в связи с тем, что содержит ключи, коммутирующие ток [10] . Сложно подобрать такой режим работы ключей, чтобы коммутация происходила в моменты, когда через ключ не протекает ток при размыкании, или на ключе нулевое напряжение при замыкании. Поэтому в моменты коммутации возникают довольно значительные броски напряжения и тока, распространяющиеся как на вход, так и на выход стабилизатора. Для поглощения помех помехоподавляющие фильтры устанавливаются как на входе, так и на выходе стабилизатора.

Использование в сетях переменного тока

Рассмотренные импульсные преобразователи напряжения преобразуют постоянный ток на входе в постоянный ток на выходе. Для питания устройств от сети переменного тока необходимо устанавливать на входе выпрямитель и сглаживающий фильтр. Стоит отметить, что импульсный стабилизатор напряжения под нагрузкой имеет отрицательное дифференциальное сопротивление: при повышении напряжения на входе для сохранения выходного напряжения уменьшается входной ток, и наоборот. Если подключить такой стабилизатор через мостовой выпрямитель в сеть переменного тока, он станет источником нечётных гармоник [11] . Поэтому, чтобы обеспечить достаточный коэффициент мощности, требуется компенсатор.

Гальваническая развязка

Стоит отметить некоторые особенности импульсных стабилизаторов с точки зрения гальванической развязки цепей:

Импульсный стабилизатор напряжения — принцип работы стабилизатора

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

Импульсный стабилизатор напряжения

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Импульсный стабилизатор напряжения

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Импульсный стабилизатор напряжения

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Читайте так же:
Синхронизация карбюратора fzr 400

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Импульсный стабилизатор напряжения

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Импульсный стабилизатор напряжения

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.
  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Как сделать стабилизаторы тока для светодиодов своими руками

Яркость светодиодных источников зависит от протекающего тока, а он в свою очередь – от напряжения питания. В условиях колебания нагрузки возникает пульсация светильников. Для ее предотвращения используется специальный драйвер – стабилизатор тока. При поломках элемент можно сделать самостоятельно.

Конструкция и принцип работы

Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

  • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
  • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

Разновидности токовых стабилизаторов

Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

Резисторные стабилизаторы

Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

Транзисторные устройства

Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

Второй транзистор должен быть биполярным.

Для реализации схемы с заменой стабилитронов на диоды применяются:

  • диоды VD1 и VD2;
  • резистор R1;
  • резистор R2.

Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

Схема нормализует режим работы элементов, снижает токовые пульсации.

Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

Читайте так же:
Блок электропитания с регулировкой тока

Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

Стабилизаторы тока на полевике

Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

Линейные устройства

Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

Феррорезонансное устройство

Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

Особенности схемы токового зеркала

Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

  1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
  2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
  3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
  4. Коллектор транзистора № 1 задействуется для установления режима схемы.
  5. Ток на выходе зависит от транзистора № 2.
  6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

Транзистор № 3 можно не согласовывать с остальными.

Стабилизатор компенсационного напряжения

Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

  • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
  • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
  • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
  • Дополнительные источники.
  • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

Устройства на микросхемах

Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

Импульсные стабилизаторы

Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

Как сделать стабилизатор тока для светодиодов самостоятельно

Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

На основе драйверов

Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

Сборка осуществляется по следующему алгоритму:

  1. Припаять проводники к среднему и крайнему выводу резистора.
  2. Перевести мультиметр в режим сопротивления.
  3. Замерить параметры резистора – они должны равняться 500 Ом.
  4. Проверить соединения на целостность и собрать цепь.

На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

Стабилизатор для автомобильной подсветки

Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

  1. Выбор схемы под L7805 из даташита.
  2. Вырезать из текстолита нужный по размеру кусок.
  3. Наметить дорожки, делая насечки отверткой.
  4. Припаять элементы так, чтобы вход был слева, а выход – справа.
  5. Сделать корпус из термотрубки.

Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

В качестве радиатора задействуется кузов машины за счет соединения центрального вывода корпуса с минусом.

Нюансы расчета стабилизатора тока

Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

  1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
  2. Поиск среднего тока I по таблице. Он равен 5 мА.
  3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
  4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
  5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

Самостоятельная сборка стабилизатора для светодиодных устройств возможна только при знании схемы. Начинающим мастерам рекомендовано использовать простые алгоритмы. Рассчитать элемент по мощности можно на основании формул из школьного курса физики.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector