Virbactd.ru

Авто шины и диски
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный переменный резистор

Электронный переменный резистор

Электронный переменный резистор

В своих самодельных поделках радиолюбители практически всегда применяют переменные резисторы для регулировки громкости или напряжения ну и естественно, каких либо других параметров. Но прибор с кнопками на лицевой панели смотрится куда более интересно и современно, чем с обыкновенными ручками-крутилками. Применения микроконтроллерного управления не всегда целесообразно в простеньких поделках, а также тяжело для новичка, а вот повторить описанный ниже электронный переменный резистор сможет, наверное, каждый.

Электронный переменный резистор

Схема имеет настолько малые габариты, что ее можно впихнуть в практически любое самодельное устройство. Она полностью выполняет функцию обыкновенного переменного резистора, не содержит дефицитных и специфических компонентов.

Электронный переменный резистор

Основу ее составляет полевой транзистор КП 501 (или любой другой его аналог).

Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С 1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С 1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.

Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С 1 и номинала резистора R 1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R 2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R 2.

После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С 1. При использовании нового и качественного конденсатора С 1 настройки схемы могут продержаться около суток.

Наверное, самым востребованным применением этой схемы станет электронный регулятор громкости. Такая электронная регулировка громкости не лишена своих недостатков, но важнейшим фактором для радиолюбителей наверняка станет простота повторения.

Демонстрацию работы этой схемы смотрим ниже, ставим лайк, а также подписываемся на наши странички в соц. сетях!

Прим. В ролике электронный аналог переменного резистора настроен на 10 кОм. Используемый мультиметр Bside ADM01 имеет автоматическое переключение диапазонов и при их переключении не всегда слету определяет текущее сопротивление схемы.

низкоомный прецизионный подстроечный резистор

Использование: изобретение относится к измерительной технике и может быть использовано при изготовлении низкоомных прецизионных проволочных резисторов. Сущность изобретения: в известном низкоомном прецизионном проволочном резисторе, содержащем спиралевидный проволочный резистивный элемент, размещенный в полости изоляционного корпуса с токоободами на его концах, токоободы выполнены в виде трубчатых элементов с размещенными в них металлическими стержнями, прижатыми упругими элементами к внутренним поверхностям трубчатого контакта, при этом резистивный элемент выполнен из металлической проволоки, концы которой зажаты в трубчатых контактах, причем один из концов проволоки зафиксирован припоем в одном из трубчатых контактов, а другой размещен и зажат между металлическим стержнем и внутренней поверхностью другого контакта с возможностью растяжения резистивного элемента 3 ил.

Формула изобретения

НИЗКООМНЫЙ ПРЕЦИЗИОННЫЙ ПОДСТРОЕЧНЫЙ РЕЗИСТОР, содержащий спиралевидный проволочный резистивный элемент, размещенный в полости изоляционного корпуса с токоотводами на его концах, отличающийся тем, что, с целью повышения разрешающей способности и плавности регулировки, токоотводы выполнены в виде трубчатых контактов с размещенными в них металлическими стержнями, прижатыми к внутренним поверхностям контактов упругими элементами, при этом резистивный элемент выполнен из металлической проволоки, конечные части которой зажаты в трубчатых контактах, причем одна из конечных частей зафиксирована припоем в одном из трубчатых контактов, а другая размещена и зажата между металлическим стержнем и внутренней поверхностью другого трубчатого контакта с возможностью растяжения резистивного элемента.

Описание изобретения к патенту

Изобретение относится к радио- и измерительной технике и может быть использовано наряду с применяемыми элементами в различных радиосхемах, особенно в измерительных.

Известен широкий класс переменных резисторов, которые в зависимости от назначения различаются конструктивными особенностями.

Известен прецизионный проволочный резистор (прототип), широко применяемый в радиотехнике.

Такой резистор представляет собой классическую форму проволочного ползункового реостата: на изоляторе рядовой намоткой укладывается проволочная спираль, концы которой закрепляются на выводах. По поверхности спирали может передвигаться ползун с контактной пластинчатой пружиной, которая также имеет свой (третий) вывод. Передвижение контакта осуществляется при помощи резьбовой пары, состоящей из резьбовой муфты, закрепленной или представляющей одно целое с контактной пружиной, и приводного винта, вращающегося в двух подшипниках скольжения. Для вращения винта на одном его конце имеется шлиц прорезь для лезвия отвертки, посредством которой вращают винт в ту или другую сторону.

Низкоомные прецизионные проволочные переменные резисторы применяются в схемах, где необходима точная подстройка радиотехнической схемы. Они выпускаются промышленностью различных номиналов от десятков до сотен Ом. Однако переменные резисторы на единицы и тем более на доли Ома автору не известны. Тем не менее в измерительной технике, например в мостовых измерительных схемах, нередко встречается необходимость подстройки линии на доли Ома.

Однако эта конструкция со спиральной намоткой резистивной проволоки на изоляторе имеет существенный недостаток она не обеспечивает плавного изменения сопротивления. Как ни мало может быть сопротивление одного витка спирали, при передвижении контакта по спирали сопротивление изменяется скачкообразно. В точных измерительных схемах это бывает недопустимо. Пока эта проблема решена полукустарным способом: в измерительной линии (например, в самопишущих потенциометрах типа КСП) впаивают отрезок высокоомной проволоки, не изменяющей своего сопротивления от температуры (например, манганин). Изменяя длину отрезка проволоки между ламелями, подгоняют сопротивление цепи и фиксируют положение с помощью припоя. Во избежание контактной разности потенциалов для пайки применяют специальный припой.

Читайте так же:
Регулировка клапанов на лифан смайли дв 1х3

Другой способ плавного изменения сопротивления основан на применении классической конструкции струнного реохорда, описание которого имеется во всех учебниках по физике и электротехнике, поэтому здесь опускается. Следует только указать, что конструкция струнного реохорда имеет, как правило, большие размеры и поэтому не может применяться как радиотехнический элемент.

Цель изобретения создать малогабаритный низкоомный прецизионный переменный резистор с плавным изменением сопротивления.

Цель достигается изменением длины высокоомной оголенной проволоки с весьма малым температурным коэффициентом (например, манганин), помещенной в защитный и несущий футляр трубочку из электроизоляционного материала, на одном конце которой закрепляется электроизоляционная втулка с контактом, к которому проволока крепится неподвижно, а в другой аналогичной втулке установлен контакт, в котором высокоомная проволока может перемещаться с трением.

На фиг. 1 показан малогабаритный низкоомный прецизионный переменный резистор, общий вид; на фиг. 2 втулка с встроенным трубчатым контактом; на фиг. 3 геометрические параметры трубчатого контакта.

В трубке 1 из электроизоляционного материала (например, полистирола или стекла) на трении вставлены две втулки пробки 2, также из электроизоляционного материала (например, текстолита, гетинакса, оргстекла и др.), в каждой из которых закреплен трубчатый посеребренный контакт 3а (3б), аналогичный по конструкции трубчатым контактам шаровых разъемов. В трубчатые контакты вставлены посеребренные стерженьки 4, служащие для надежного прижатия к внутренним стенкам контактов 3а и 3б манганиновой оголенной проволоки 5, которая навита с шагом в виде растянутой спирали (пружины). Один конец манганиновой спирали пропущен в трубчатый контакт 3а, зажат стерженьком 4 и припаян снаружи к месту припайки внешних проводов. Второй конец спирали пропущен внутрь трубчатого контакта 3б, также зажат другим стерженьком 4, но к выводному контакту не припаивается и поэтому может с трением перемещаться внутри трубчатого контакта 3б, вытягивая за выступающий из контакта 3б конец манганиновой проволоки можно плавно уменьшить сопротивление резистора.

Следует указать, что методика подстройки сопротивления измерительной цепи, как правило, производится при уменьшении сопротивления резистора от какого-то начального завышенного значения сопротивления. Однако, если необходимая величина сопротивления резистора по какой-либо причине оказалась ниже требуемого, операцию подстройки следует повторить. Для этого из трубки 1 вынимают пробку 3б, вытягивают пинцетом обратно часть манганиновой проволоки, вставляют пробку 3б обратно в трубку 1 и операцию подстройки проводят повторно.

Чтобы исключить межвитковые соединения спирали из высокоомной оголенной проволоки спираль растягивают так, чтобы расстояние между витками было достаточно большим порядка 2-3 мм.

Чтобы исключить поперечные колебания спирали внутри защитной трубки, отрицательно влияющие на прочность мест закрепления спирали, зазор между спиралью и внутренней стенкой защитной трубки должен быть минимальным.

Уменьшение переходного контактного сопротивления осуществляется использованием благородных металлов для покрытия движущихся частей контактов.

Для увеличения долговечности переменного резистора после многократного перемещения проволоки в трубчатом контакте 3б (см. фиг. 1 и 2) следует вынуть контактный стержень 4 и вновь вставить его в трубчатый контакт, предварительно повернув вокруг оси на некоторый угол, чтобы контакт с проволокой проходил по новому «чистому» месту.

Поскольку прецизионный переменный резистор для максимального упрощения конструкции не имеет указателя положения, то воспроизводимость показаний контролируется по выходному сигналу (в мостовых схемах по нулевому) работающей измерительной схемы, что осуществляется с помощью предлагаемой конструкции достаточно просто.

Ниже приведенное соотношение, связывающее внутренний диаметр трубчатого контакта а (фиг. 3), наружный диаметр стержневого контакта в и диаметр поперечного сечения резистивной проволоки с обеспечивает необходимый зазор в трубчатом контакте для перемещения с натягом резистивной проволоки. Более плотное прилегание между собой взаимоперемещаемых деталей резистора а, в и с осуществляет подпружинивающий элемент трубчатого контакта (см. фиг. 2 и 3).

а-в 2К, где К зазор, причем K c/2; фактический критерий: b/a 0,85-0,9.

Главные преимущества предлагаемой конструкции низкоомного переменного резистора перед выпускаемыми промышленностью следующие.

Плавность изменения сопротивления резистора.

Малые габариты, что позволяет использовать их в обычных радиотехнических схемах.

Технологическая простота конструкции, позволяющая легко наладить серийный выпуск переменных резисторов различных номиналов.

Возможность изготовления весьма низкоомных резисторов.

Предлагаемая конструкция успешно пользовалась для коррекции дифференциальной схемы, состоящей из измерительных термометров сопротивления, что другими типами переменных резисторов осуществлять не удалось

Любительская приставка к блоку питания на lm2596 + DSN-VC288

У многих из нас скопились различные блоки питания от ноутбуков, принтеров или мониторов напряжением +12, +19, +22. Это отличные источники питания, имеющие защиту и от короткого замыкания и от перегрева.
Тогда как в домашней, радиолюбительской практике, постоянно требуется регулируемый, стабилизированный источник. Если не целесообразно вносить изменения в схему уже имеющихся блоков питания, то на помощь придет совсем несложная приставка к такому блоку.

Читайте так же:
Не могу отрегулировать кпп кадета

Эта статья является компиляцией некоторых моих других статей соединить которые, мне то было некогда, то неохота, но на самом деле, были более интересные дела и вещи =)

Для сборки любительской приставки с плавной регулировкой выходного напряжения нам понадобятся:
— готовый модуль на микросхеме lm2596;
— монтажная коробочка;
— два гнезда внутренним диаметром 5.2мм;
— потенциометр 10 кОм;
— два постоянных резистора 22 кОм каждый;
— панельный ампервольтметр DSN-VC288.

Статья будет состоять из нескольких законченных частей, в каждой из которых будут подробно описаны шаги, особенности и подводные камни используемых компонентов.

Микросхема lm2596, на которой реализован модуль, хороша тем, что имеет защиту от перегрева и защиту от короткого замыкания, но имеет несколько особенностей.
Посмотрите на типовой вариант ее включения, в данном случае, микросхема редакции выходного фиксированного напряжения +5 вольт, но, для сути это не важно:

Поддержание стабильного уровня напряжения, обеспечивается подключением выхода обратной связи четвертой (Feed Back) ножки микросхемы подключенной непосредственно к выходу стабилизированного напряжения.
В рассматриваемом конкретном модуле, применена редакция микросхемы с изменяемым выходным напряжением, но принцип регулирования выходного напряжения тот же:

К выходу модуля, подключается резистивный делитель R1- R2 с верхним включенным подстроечным резистором R1, вводя сопротивление которого, выходное напряжение микросхемы можно менять. В этом модуле R1 = 10k R2 = 0.3k. Плохо то, что регулировка не плавная и осуществляется только на последних 5-6 оборотах подстроечного резистора.
Для осуществления плавной регулировки выходного напряжения, радиолюбители исключают резистор R2, а подстроечный резистор R1 меняют на переменный. Схема выходит вот такой:

А как раз вот тут, возникает серьезная проблема. Дело в том, в течении эксплуатации переменного резистора, рано или поздно, контакт (его прилегание к резистивной подковке) среднего вывода нарушается и вывод 4 (Feed Back) микросхемы оказывается (пусть и на миллисекунду) в воздухе. Это ведет к мгновенному выходу микросхемы из строя.
Ситуация так же плоха, когда для подсоединения переменного резистора используются проводники – резистор получается выносной – это, так же может способствовать потере контакта. Потому, штатный резистивный делитель R1 и R2 следует выпаять, а вместо него, впаять два постоянных прямо на плате – этим решается проблема потери контакта с переменным резистором при любых случаях. Сам переменный резистор, следует припаять уже к выводам распаянных.
На схеме, R1= 22 kOm и R2=22 kOm, а R3=10kOm.

На реальной схеме. R2 был сопротивлением соответствующим его маркировке, а вот R1 меня удивил, хотя на нем и нанесена маркировка 10k на самом деле, его номинальное сопротивление оказалось 2k. =)

Удалите R2 и поставьте на его месте каплю припоя. Удалите резистор R1 и переверните плату на обратную сторону:

Припаяйте два новых R1 и R2 резистора руководствуясь фотографией. Как видно, будущие проводники переменного резистора R3 будут подключаться к трем точкам делителя.

Что это даст:
— при обрыве только правого по рисунку вывода переменного резистора, выходное напряжение упадет до 2.4v;
— только среднего или всех — 2.4v;
— только левого — 1.3v.
Это, я считаю преимуществами над всеми другими методами борьбы с обрывом сигнала FB
Всё, отложим модуль в сторону.
На очереди панельный ампертвольметр.

DSN-VC288 не годится для сборки лабораторного источника питания, так как минимальный ток, который с его помощью можно измерить составляет 10ma.
Но ампервольтметр отлично подходит для сборки любительской конструкции, а потому, применю я именно его.
Вид с обратной стороны такой:

Обратите внимание на расположение разъемов и доступных регулировочных элементов и особенно на высоту разъема измерения тока:

Поскольку, выбранный мной для этой самоделки корпус не имеет достаточной высоты, то металлические штырьки токового разъема DSN-VC288 мне пришлось скусить, а прилагающиеся толстые проводники — напаять на штырьки непосредственно. Перед пайкой, сделайте на концах проводков по петельке, и насадив каждую на каждый штырек паяйте – для надежности:

Визуальная схема соединения DSN-VC288 и lm2596

Левая часть DSN-VC288:
— черный тонкий провод не подключается ни к чему, заизолируете его конец;
— желтый тонкий соедините с плюсовым выходом модуля lm2596 – НАГРУЗКА «ПЛЮС»;
— красный тонкий соедините с плюсовым входом модуля lm2596.

Правая часть DSN-VC288:
— черный толстый соедините с минусовым выходом модуля lm2596;
— красный толстый будет НАГРУЗКА «МИНУС»

Окончательная сборка.

Монтажную коробочку я использовал размерами 85 x 58 x 33 mm.:

Нанеся разметку карандашом, диском дремеля, я вырезал окно для DSN-VC288 по размеру внутреннего бортика прибора. При этом, вначале я пропилил диагонали, а за тем, отпиливал отдельные сектора по периметру размеченного прямоугольника. Плоским напильником придется поработать, понемногу подгоняя окно под внутренний бортик DSN-VC288:

Читайте так же:
Регулировка давления на компрессоре fiac

На этих фото, крышка не прозрачная. Прозрачную я решил использовать позднее, но это не важно, кроме прозрачности, они абсолютно одинаковые.
Так же, наметьте отверстие под нарезной воротник переменного резистора:

Обратите внимание, что монтажные ушки базовой половины коробочки обрезаны. А на саму микросхему, имеет смысл наклеить небольшой радиатор. У меня под рукой были готовые, но, нетрудно выпилить подобный из радиатора, допустим, старой видеокарты. Подобный я выпиливал для установки на PCH чип ноутбука, ничего сложного =)

Здесь необходимо заметить

несколько раннее, я вывел из строя модуль xl4015 и его я выбрал в качестве донора. Штатный дроссель был заменен на более габаритный (даташит на микросхему этого вовсе не запрещал), так же был заменен и диод.

и

Монтажные ушки на монтажной же коробочке, помешали бы при установке вот таких гнезд 5.2мм:

В итоге, у вас должно получиться именно вот что:
При этом, слева находится входное гнездо, справа – выход:

Проверка.

Подайте питание на приставку и посмотрите на дисплей. В зависимости от положения оси переменного резистора вольты прибор может показывать разные, а вот ток, должен быть по нулям. Если это не так, значит, прибор придется откалибровать. Хотя, я много раз читал, что заводом это уже сделано, и ничего от нас делать не придется, но все-таки.
Но вначале обратите внимание на верхний левый угол платы DSN-VC288, два металлизированных отверстия предназначены для установки прибора на ноль.

Итак, если без нагрузки прибор показывает некий ток, то:
— выключите приставку;
— надежно замкните пинцетом эти два контакта;
— включите приставку;
— удалите пинцет;
— отключите нашу приставку от блока питания, и подключите ее вновь.

Испытания на нагрузку.

Мощного резистора у меня нет, но был кусочек нихромовой спирали:

В холодном состоянии сопротивление составило около 15 ом, в горячем, около 17 ом.
На видео, вы можете посмотреть испытания получившейся приставки как раз на такую нагрузку, ток я сравнивал с образцовым прибором. Блок питания был взят на 12 вольт от давно исчезнувшего ноутбука. Так же на видео виден диапазон регулируемого напряжения на выходе приставки.

total.
— приставка не боится короткого замыкания;
— прежде всего, предназначенная для эпизодов отладки, она не боится перегрева;
— не боится обрыва цепей регулировочного резистора, при его обрыве, напряжение автоматически падает до безопасного уровня которое я давал выше;
— приставка, так же легко выдержит, если вход и выход будут при подключении перепутаны местами – такое случалось;
— применение найдется любому внешнему блоку питания от 7 вольт и до 30 вольт максимум, а;
— показаний встроенного амперметра вполне хватит для того что бы заметить аварию если что-то пойдет не так.

Статьи, чтение которых оказалось очень полезным для меня:
первая, касается самого ампервольтметра
вторая касается стабилизаторов, вот =)
а после нажатия на эту ссылку, вы сможете скачать справочный листок к этой, всем известной микросхеме.

UPD.
В ходе дискуссии ниже в комментариях, стало ясно, что есть более экономный способ добиться того же эффекта, которого добился я:

Посмотрите, неважно, подстроечный это резистор или выносной переменный R2, при потере контакта с ним, вход FB окажется подключенным к выходу через резистор R1.
Этот способ, указал kirich вот здесь.
Кроме того, если уж я взялся дорезать последний патиссон, то калькулятор делителя, находится вот здесь =))
eoUPD

В статье про ампервольтметр, я уже размещал это видео, еще раз его смотреть необходимости

Регуляторы громкости и тембра.

Казалось бы, нет ничего проще — изменяй уровень звукового напряжения, подводимого к УМЗЧ, вот и вся регулировка!
Сделать это можно простым потенциометром — переменным резистором (рис. 1), к крайним выводам которого подведено входное напряжение ЗЧ, а с движка — средний вывод — и общего вывода снимают сигнал на вход УМЗЧ (рис. 2а).

tembr1

В простейших конструкциях так и делают. Переменные резисторы бывают разные: типа А имеют линейную зависимость сопротивления от угла поворота оси. Такие плохо подходят для регулятора громкости, поскольку вначале, при малых углах поворота, громкость субъективно меняется резко, а при больших углах поворота, вблизи максимальной громкости, она почти не меняется.
Объяснение простое: наши органы чувств, в том числе и слух, имеют логарифмическую зависимость отклика от интенсивности внешнего воздействия. Например, увеличив уровень сигнала ЗЧ вдвое, мы почувствуем увеличение громкости на сколько-то. Чтобы увеличить громкость еще на столько же, надо увеличить уровень еще вдвое, и так далее.
Чтобы субъективно получить увеличение громкости, пропорциональное углу поворота оси, применяют переменные резисторы с обратнологарифмической (экспоненциальной) зависимостью, типа В.
Определить тип резистора легко обычным омметром. Повернув ось против часовой стрелки до упора, то есть в положение минимальной громкости, надо найти вывод, сопротивление между которым и средним выводом нулевое. Поворачивая ось, замечают, что сначала сопротивление возрастает медленно, затем все быстрее и быстрее. Это и есть резистор типа В.
Однако с простыми регуляторами громкости (рис. 2а) было замечено, что при малых уровнях громкости звук становится каким-то «плоским», невыразительным, в нем субъективно пропадают басы и высокие частоты. Причем, потеря низких частот (басов) заметно сильнее, чем потеря верхних.

Читайте так же:
Пневматическая шлифмашина с регулировкой оборотов

tembr2

tembr3

Для компенсации этого явления предложены частотно-зависимые, или тонкомпенсированные, регуляторы громкости (рис. 2б). Для них нужен потенциометр с отводом от проводящего слоя, сделанный примерно от 1/10 части, считая по сопротивлению. Для переменного резистора R1 номиналом 47 или 50 кОм сопротивление между отводом и нижним по схеме выводом должно быть около 5 кОм.
В устройстве предусмотрено отключение тонкоррекции. В нижнем положении переключателя к отводу потенциометра присоединен только резистор R3, увеличивающий плавность регулировки и не влияющий на частотную характеристику. В верхнем же положении переключателя работают элементы тонкоррекции C1, С2, R2. Они подобраны так, чтобы цепочка R2, С2 ослабляла средние и верхние частоты, когда движок потенциометра находится ниже отвода. Субъективный завал самых Полностью ли отвечает столь несложный тонкомпенсатор свойствам человеческого слуха? Естественно, нет — он только первое, хотя и неплохое, приближение. Есть и более сложные, например, использующие потенциометры с несколькими отводами. Но к чему же надо стремиться?
В многочисленных электроакустических исследованиях получены кривые равной громкости (изофоны). Прежде чем в них разобраться, определимся с единицами измерений.
Уровень громкости звука — относительная величина. Она выражается в фонах и численно равна уровню звукового давления (в децибелах — дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равным по громкости данному звуку).

tembr5

На рисунке 3 изображено семейство кривых равной громкости, называемых также изофонами.
Они представляют собой графики стандартизированных (международный стандарт ISO 226) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этого графика можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления.
Например, если синусоидальная волна частотой 50 Гц создает звуковое давление около 80 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме, находим на их пересечении изофону, соответствующую уровню громкости 60 фон. Это значит, что данный звук имеет уровень громкости 60 фон.

Изофона «0 фон», обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального усредненного слуха. За нулевой уровень звукового давления принято значение 2-10-5 Па, примерно соответствующее порогу слышимости на частоте 1000 Гц.
В таблице 1 приведены ориентировочные значения громкости различных звуков.
Из рисунка 3 видно, что полной компенсации изофонических кривых при регулировании громкости добиться довольно трудно, поэтому, кроме тонкоррекции, используют дополнительные регуляторы, позволяющие получить желаемый тембр звучания при любой громкости.

Регулировка тембра

В простейшем случае достаточно обеспечить некоторый подъем нижних и верхних звуковых частот, чтобы сделать звучание приятнее и выразительнее. Для этого необязательно конструировать устройства с плавной регулировкой.
Одно время было модным делать УЗЧ с фиксированными частотными характеристиками даже в серьезной промышленной аппаратуре. Схема очень простого ступенчатого регулятора тембра приведена на рисунке 4.

tembr4

Регулятор имеет три положения.
В положении переключателя 1 конденсатор C1 отключен, а конденсатор С2 замкнут накоротко. Поэтому коррекция отсутствует и частотная характеристика регулятора равномерна во всем диапазоне звуковых частот. Происходит лишь некоторое ослабление амплитуды проходящего сигнала, обусловленное делителем напряжения R1, R2.
В положении 2 «Бас» включается в работу конденсатор С2. На средних и высоких частотах его емкостное сопротивление мало, и эти частоты по- прежнему ослабляются делителем R1, R2. На нижних частотах, ниже частоты Fн = 1/(2πR2C2), сопротивление конденсатора С2 возрастает, и эти частоты ослабляются меньше, что и соответствует подъему басов.
В положении 3 «Джаз» параллельно R1 подключается емкость С1 и поднимаются верхние частоты, начиная с частоты Fв = 1/(2πR1C1),
Примерно по тому же принципу работает и более сложный регулятор тембра с плавной и независимой регулировкой подъема или некоторого завала нижних и верхних звуковых частот. Его схема показана на рисунке 5.

tembr6

В верхнем положении движка резистора R2 поднимаются нижние частоты, поскольку средние и высокие ослаблены цепочкой C1, R3.
В нижнем же его положении басы ослаблены, поскольку средние и высокие частоты проходят к УМЗЧ через конденсатор С1. Регулятор верхних частот R4 подобен уже рассмотренному простейшему регулятору громкости. Но на средних и низких частотах он не действует из-за возрастающего емкостного сопротивления конденсатора С2. Высокие же частоты проходят через этот конденсатор беспрепятственно.
В регуляторах тембра с успехом можно использовать переменные резисторы с линейной зависимостью сопротивления от угла поворота оси (типа А).
В высококачественной аппаратуре применяют и более сложные регуляторы тембра или даже многополосные эквалайзеры, позволяющие независимо подобрать уровень любой полосы звуковых частот. О них можно прочитать в специальной литературе по звукотехнике.

Читайте так же:
Регулировка давления воды в гидроаккумуляторе на 100 литров

Растягиваем диапазон регулировки. Грубая настройка, точная подстройка. Схемы растягивания. Способы настроить. Методы подстроить

Иногда при проектировании радиоэлектронных схем возникает необходимость обеспечить возможность регулировки с малым допуском ошибки. Такая регулировка еще называется регулировкой с растянутым диапазоном. Рассмотрим способы растягивания диапазона.

Для подстройки параметров схемы чаще всего применяются переменные / подстроечные конденсаторы и резисторы. Иногда можно увидеть также катушки индуктивности, с изменяющейся индуктивностью за счет перемещения сердечника. Остановимся на конденсаторных и резисторных схемах. В отношении схемы с переменными дросселями я дам дополнительное пояснение.

Механическое растягивание

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Одним из распространенных способов растянуть диапазон регулировки является применение механического редуктора с большим передаточным числом. Редуктор устанавливается так, чтобы большое число оборотов регулировочной ручки соответствовало небольшому числу оборотов движка резистора, конденсатора или дросселя. С помощью такого редуктора можно добиться очень точного позиционирования движка регулировочного элемента и, тем самым, точной настройки схемы.

Ограничением в использовании такого подхода является существенный дребезг многих радиоэлектронных подстроечных элементов. У них существует некоторая дискретность установки значения. То есть, даже минимальное перемещение движка приводит к некоторому изменению регулируемой величины. Сдвинуть движок так, чтобы изменение было еще меньше, невозможно.

Сейчас в продаже имеются специальные подстроечные элементы с низким дребезгом и встроенным редуктором, например, подстроечные резисторы для точной регулировки, в которых полное перемещение движка происходит за несколько десятков оборотов.

Точная регулировка, подстройка, настройка. Подстроечный резистор со встроенным редуктором

Грубая настройка, точная подстройка

Альтернативой является применение двух регулирующих элементов: для грубой настройки и для точной подстройки. В простейшем случае нам нужно получить возможность точно задать сопротивление, емкость или индуктивность. Тогда применяются два элемента, соединенные так, чтобы значения суммировались. Для резисторов и дросселей это будет последовательное соединение, а для конденсаторов — параллельное. Причем один из элементов выбирается так, чтобы диапазон его регулировки был равен точности настройки другого.

Поясню на примере переменного резистора. Пусть нам необходим резистор с диапазоном регулировки от 0 до 100 кОм. Пусть наша оценка точности регулировки этого резистора составляет 3%. Кстати, это значение типичное для резисторов, конденсаторов и дросселей с диапазоном движения движка около 300 градусов. Человеку не составляет труда установить движок такого элемента с точностью 9 градусов. Выберем второй резистор 3 кОм. Теперь точность регулировки составит около +- 50 Ом, то есть +- 0.05%.

Если нам необходима точная регулировка в определенных небольших пределах, то вместо переменного элемента большего номинала можно подобрать и поставить постоянный резистор, конденсатор или дроссель. Например, если необходимо получить регулировку емкости от 1000 до 1010 пФ, то выберем постоянный конденсатор в 1000 пФ, а параллельно ему поставим переменный на 10 пФ.

Элемент грубой регулировки может быть заменен переключателем пакета элементов нескольких номиналов, тогда регулировка будет выглядеть, как выбор нужного диапазона регулировки переключателем с дальнейшей точной подстройкой.

Делитель напряжения

Иногда нужно точно регулировать выходную амплитуду сигнала при заданной входной. Обычно для этого применяется регулируемый делитель напряжения. Для точной регулировки есть его варианты:

У варианта (A3) есть такой недостаток: при точной подстройке меняется входное сопротивление делителя. Этот измененеие невелико, так как обычно сопротивление резистора R2 выбирается в районе 3% от сопротивления резистора R1. В большинстве случаев это неважно, но если все же такое изменение нежелательно, то можно применять схему (A4). В ней используется сдвоенный резистор (R2R3), установленный так, чтобы уменьшение сопротивления R2 компенсировалось увеличением сопротивления R3 и наоборот.

Применяемые радиодетали

В приведенных схемах необходимо применять радиодетали с минимальным шумом и дрейфом параметров со временем и при изменении внешних условий (температуры, влажности и т. д.) Иначе точная регулировка будет постоянно сбиваться, и наше схемное решение потеряет смысл.

1 2

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Прямоходовый импульсный стабилизированный преобразователь напряжения, .
Как работает прямоходовый стабилизатор напряжения. Описание принципа действия. П.

Понижающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать понижающий импульсный преобразователь. Шаг 1. Как выбрать ча.

Использование переключающихся конденсаторов в бестрансформаторном исто.
Вариант бестрансформаторной схемы источника питания с переключением конденсаторо.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector