Virbactd.ru

Авто шины и диски
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой регулятор сварочного тока

Простой регулятор сварочного тока

Каждый, не имеющий сварочного аппарата, мечтает его приобрести. Каждый, имеющий сварочный аппарат мечтает, чтобы он варил … ну, как на заводе (фабрике и т.п.). Увы, наша домашняя (гаражная) однофазная электрическая сеть заметно отличается от промышленной — трехфазной, да и конструкции домашних сварочников тоже далеки от совершенства. Поэтому чаще всего мы варим переменным током с использованием соответствующих электродов. Некоторые энтузиасты (в т.ч. и я когда-то) ставят на выход сварочного трансформатора выпрямитель, но и в этом случае электродами, рассчитанными на постоянный ток, варить невозможно, ток ведь получается не постоянный, а пульсирующий. Сгладить пульсации теоретически несложно, ставь себе дроссель или конденсатор побольше, но, увы, пульсации таким способом можно фильтровать до определенного предела. Слишком большая индуктивность дросселя приводит к плохому зажиганию дуги и прилипанию электрода, а большая емкость конденсаторов фильтра вызывает маленький «взрыв» при начальном замыкании электрода на свариваемую деталь. Плюс еще одна проблема бытовых сварочных аппаратов — большой ток короткого замыкания, что приводит к перегрузке питающей сети, сильному падению напряжения и … жалобам соседей по улице (гаражу).

Итак, перечень проблем, требующих решения, определен. Далее переходим к описанию приставки к сварочному трансформатору, разработанной и изготовленной автором. Приставка выполняет следующие функции: сглаживание пульсаций постоянного тока; электронная бесступенчатая регулировка тока сварки; ограничение тока короткого замыкания.

Приставка подключается к выходу выпрямителя сварочного трансформатора с напряжением на вторичной обмотке 43 В (без нагрузки).

Основные характеристики:
— напряжение холостого хода — 60 В
— максимальный сварочный ток — 120 А
— пределы регулирования тока — 15 A . 120 А
— ток к.з. при токе сварки — 100 А . 130 А

Конструктивно приставка разделена на силовую часть и блок управления (БУ).

БУ (см. схему 1) состоит из задающего генератора на микросхеме DD1, усилителя сигнала датчика тока ДТ на транзисторах VT1, VT2 и формирователя импульсов управления (DD2, VT3).

Задающий генератор выдает импульсы частотой 20 кГц, которые поступают на запускающий вход одновибратора DD2. Длительность импульсов, формируемых одновибратором, зависит от тока в цепи заряда конденсатора С4. Максимальная ширина импульса (при полностью запертом транзисторе VT2) определяется суммой сопротивлений R8 и R9. При открытии VT2 ширина выходного импульса одновибратора уменьшается. Диапазон изменения длительности импульса от 45 до 0,5 мкс. Транзистором VT2 управляет усилитель на VT1, на затвор которого поступает сигнал с датчика тока ДТ. При увеличении сварочного тока возрастает напряжение ДТ, что приводит к увеличению тока стока VT1, приоткрывается транзистор VT2, увеличивается ток заряда конденсатора С4 и уменьшается ширина импульса на выходе DD2, что приводит к снижению тока на выходе регулятора.

Крутизну характеристики усилителя на VT1, VT2 регулирует потенциометр R5 — регулятор сварочного тока. Диод VD1 на входе определяет пороговый уровень напряжения, с которого начинается ограничение тока сварки. Для обеспечения стабильной работы конденсаторы С1 и С4 должны иметь минимальный ТКЕ. Транзистор VT2 должен иметь коэффициент усиления по току не менее 200.

Силовая часть (см. схему 2) представляет собой ключевой регулятор с широтно-импульсным управлением. Входной фильтр имеет емкость 35 тыс. мкф (работает и с 20 тыс. мкф, но пульсации выше при сварке большими токами). Транзисторы второго и третьего каскадов включены параллельно. В эмиттерные цепи VT 2,VT3 включены выравнивающие резисторы (5 см проволоки из нихрома ф1,2 мм), в эмиттерах VT4 … VT23 то же, но длина 10 см. Резистор R3 — из двух по 27 ом параллельно (МЛТ-0,5), R4 — из четырех по 10 ом (МЛТ-2). Транзисторы VT2 … VT23 установлены на двух радиаторах (алюминиевые пластины общей площадью около 900 см2). Диоды VD1 …VD6 установлены на ребристом радиаторе (300 см2). Для обдува применяется вентилятор от блока питания компьютера (12 В, 0,1А). Дроссель намотан жгутом из 16 проводов ф1 мм, 9 витков на двойном сердечнике от ТВС-110 (ч/б телевизоры). Сердечники сложены параллельно, между половинками зазор 2,5 мм (прокладки из стеклотекстолита). Датчиком тока служит шунт, изготовленный из нихрома (длина около 130 мм, сечение 20 мм2). Сигнал с шунта поступает на вход БУ а также через добавочный резистор R5 на измерительный прибор — указатель тока сварки. С3 — три конденсатора по 8,2 мкф, на 63 В, типа К73-16. С2 — К50-24, К50-29 или импортные.

Читайте так же:
Как отрегулировать зазор между диском и тормозной колодкой

НАЛАДКА блока управления:

Проверяют частоту импульсов на выводе 3 микросхемы DD1. Замыкают вход ДТ на массу, ставят резистор R5 в положение минимального тока (движок внизу), R8 — в среднее положение. Резистором R6 устанавливают на выходе 6 микросхемы DD2 длительность импульса 10 мкс. Переводят R5 в положение максимального тока (верхнее по схеме). Резистором R8 устанавливают длительность импульса на выходе 6 DD2 45 мкс. Проверяют работу БУ. При подаче на вход ДТ напряжения от 0 до 1 В ширина импульса на выходе должна изменяться от 45 до 0,5 мкс.

Как сделать простой регулятор тока для сварочного трансформатора

Как сделать простой регулятор тока для сварочного трансформатораВажной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.

Схема регулятора сварочного тока

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часы».

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Схема регулятора сварочного тока

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Как сделать простой регулятор тока для сварочного трансформатора

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Инверторный источник сварочного тока

Инверторный источник сварочного тока (ИИСТ, Инверторный сварочный аппарат, Cварочный инвертор) — один из современных видов источника питания сварочной дуги.

Инверторные источники сварочного тока для всех видов сварки устроены одинаково. Отличие состоит лишь в формируемой вольт-амперной характеристике. Поэтому возможен выпуск универсальных ИИСТ, пригодных для различных видов сварки (MMA, TIG, MIG/MAG).

Содержание

История [ править | править код ]

Основное назначение всех сварочных источников — обеспечивать стабильное горение сварочной дуги и её легкий поджиг. Одним из самых важных параметров сварочного процесса является его устойчивость к колебаниям и помехам. Существует несколько видов источников питания сварочной дуги — трансформаторы, дизельные или бензиновые электрогенераторы, выпрямители и инверторы. Инверторный источник сварочного тока появился в XX веке, а в начале XXI века стал одним из самых популярных сварочных аппаратов для всех видов дуговой сварки.

Принцип действия [ править | править код ]

Сварочный инвертор представляет собой силовой трансформатор для понижения напряжения сети до необходимого напряжения холостого хода источника, блок силовых электрических схем, в основу которых заложены транзисторы MOSFET или IGBT и стабилизирующего дросселя для уменьшения пульсаций выпрямленного тока. Принцип действия инверторного источника сварочной дуги следующий: сетевое напряжение переменного тока подается на выпрямитель, после которого силовой модуль преобразует постоянный ток в переменный с повышенной частотой, который подается на высокочастотный сварочный трансформатор, имеющий существенно меньшую массу, чем сетевой, напряжение которого, после выпрямления, подается на сварочную дугу. Дуга на постоянном токе более устойчива.

Преимущества [ править | править код ]

Преимуществом инверторного источника питания сварочной дуги является уменьшение размеров силового трансформатора и улучшение динамической характеристики дуги. Использование инверторных технологий привело к уменьшению габаритов и массы сварочных аппаратов, улучшению качественного показателя сварочной дуги, повышению КПД, минимальному разбрызгиванию при сварке, позволило реализовать плавные регулировки сварочных параметров.

Недостатки [ править | править код ]

  • До конца 2000-х годов инверторные источники были намного дороже трансформаторных и менее надежны. По состоянию на 2010-е годы цена на инверторные аппараты значительно снизилась и приблизилась к трансформаторным. Надежность ИИСТ тоже существенно возросла, особенно с началом массового применения IGBT-модулей.
  • Ограниченность по коэффициенту загрузки, что связано со значительным нагревом элементов схемы.
  • Повышенная чувствительность к влажности воздуха и конденсату, выпадающему внутри корпуса.
  • Высокий (а зачастую — опасный) уровень создаваемых высокочастотных электромагнитных помех. Эта проблема частично решается применением так называемой улучшенной широтно-импульсной модуляции и синхронными выпрямителями во вторичных цепях. Однако эти решения существенно удорожают и утяжеляют устройство поэтому нашли применение лишь в профессиональных стационарных моделях. В ряде стран, например, в Канаде, Бельгии и Нидерландах, есть ограничения на применение импульсных источников питания с «жестким» переключением транзисторов. Наиболее ранние типы сварочных инверторов (построенные на биполярных транзисторах) использовали резонансный принцип и переключение выходных транзисторов при нулевой фазе тока, что существенно сужает спектр электромагнитных помех и уменьшает их спектральную мощность. По состоянию на 2015 год сварочные инверторы резонансного типа все ещё выпускаются в России и некоторыми производителями в Китае.

Схемотехника [ править | править код ]

Инверторные источники сварочного тока могут строиться по самым различным схемам, но на практике преобладают три:

Принцип работы и устройство сварочного инвертора

Чтобы правильно выбрать оборудование для выполнения сварочных работ, необходимо знать устройство конструкции и принцип работы сварочного инвертора. Если хорошо разбираться в таких вопросах, можно не только эффективно использовать, но и самостоятельно ремонтировать инверторные устройства.

Инверторные сварочные аппараты производства Италии

Инверторные сварочные аппараты производства Италии

Как работает инверторный сварочный аппарат

Принцип действия инверторного аппарата во многом схож с работой импульсного блока питания. И в инверторе, и в импульсном блоке питания энергия трансформируется похожим образом.

Процесс преобразования электрической энергии в сварочном аппарате инверторного типа можно описать так.

  • Переменный ток с напряжением 220 Вольт, протекающий в обычной электрической сети, преобразуется в постоянный.
  • Полученный постоянный ток при помощи специального блока электрической схемы инвертора опять преобразуется в переменный, но обладающий очень высокой частотой.
  • Понижается напряжение высокочастотного переменного тока, что значительно увеличивает его силу.
  • Сформированный электрический ток, обладающий высокой частотой, значительной силой и низким напряжением, преобразуется в постоянный, на котором и выполняется сварка.

Принцип работы сварочного инвертора

Принцип работы сварочного инвертора

Основным типом сварочных аппаратов, которые использовались ранее, были трансформаторные устройства, повышавшие сварочный ток за счет уменьшения значения напряжения. Самыми серьезными недостатками такого оборудования, которое активно используется и сегодня, являются низкий КПД (так как в них большое количество потребляемой электрической энергии тратится на нагрев железа), большие габариты и вес.

Изобретение инверторов, в которых сила сварочного тока регулируется совершенно по иному принципу, позволило значительно уменьшить размеры сварочных аппаратов, а также снизить их вес. Эффективно регулировать сварочный ток в таких аппаратах становится возможным благодаря его высокой частоте. Чем выше частота тока, который формирует инвертор, тем меньшими могут быть габариты оборудования.

Одна из основных задач, которую решает любой инвертор, – это увеличение частоты стандартного электрического тока. Возможно это благодаря использованию транзисторов, которые переключаются с частотой 60–80 Гц. Однако, как известно, на транзисторы можно подавать только постоянный ток, в то время как в обычной электрической сети он переменный и имеет частоту 50 Гц. Чтобы преобразовать переменный ток в постоянный, в инверторных аппаратах устанавливают выпрямитель, собранный на основе диодного моста.

После транзисторного блока, в котором формируется переменный ток с высокой частотой, в сварочных инверторах расположен трансформатор, который понижает напряжение и, соответственно, увеличивает силу тока. Для регулировки напряжения и тока, имеющих высокую частоту, требуются менее габаритные трансформаторы (при этом по своей мощности они не уступают более крупным аналогам).

Сварочный инвертор без защитного кожуха

Сварочный инвертор без защитного кожуха

Элементы электрической схемы инверторных устройств

Устройство сварочного инвертора составляют следующие базовые элементы:

  • выпрямитель переменного тока, поступающего из обычной электрической сети;
  • инверторный блок, собранный на основе высокочастотных транзисторов (такой блок и является генератором высокочастотных импульсов);
  • трансформатор, который понижает высокочастотное напряжение и увеличивает высокочастотный ток;
  • выпрямитель переменного высокочастотного тока;
  • рабочий шунт;
  • электронный блок, отвечающий за управление инвертором.

Пример принципиальной схемы инвертора (нажмите для увеличения)

Пример принципиальной схемы инвертора (нажмите для увеличения)

Выпрямительный и инверторный блоки оборудования в процессе своей работы сильно нагреваются, поэтому их устанавливают на радиаторы, активно отводящие тепло. Кроме того, для защиты выпрямительного блока от перегрева используется специальный термодатчик, отключающий его электропитание при достижении им температуры 90 градусов.

Инверторный блок, являющийся, по сути, генератором высокочастотных импульсов большой мощности, собирается на основе транзисторов, соединяемых по типу «косого моста». Высокочастотные электрические импульсы, формирующиеся в таком генераторе, поступают на трансформатор, необходимый для того, чтобы понизить значение их напряжения.

Наиболее распространенными трансформаторами, используемыми для оснащения сварочных инверторов, являются устройства со следующими характеристиками: первичная обмотка – 100 витков провода марки ПЭВ (толщина 0,3 мм); 1-я вторичная обмотка – 15 витков из медной проволоки диаметром 1 мм; 2-я и 3-я вторичные обмотки – 20 витков медного провода диаметром 0,35 мм. Все обмотки тщательно изолируются друг от друга, а места их выхода защищаются и запаиваются.

Внутреннее устройство сварочного инвертора

Внутреннее устройство сварочного инвертора

На выходной выпрямитель сварочного инвертора поступает ток, обладающий высокой частотой. С преобразованием такого тока в постоянный простые диоды не справятся. Именно поэтому основу выпрямителя составляют мощные диоды, обладающие большой скоростью открывания и закрывания. Чтобы предотвратить перегревание диодного блока, его размещают на специальном радиаторе.

Обязательным элементом любого сварочного инвертора является резистор высокой мощности, обеспечивающий устройству мягкий пуск. Необходимость использования такого резистора объясняется тем, что при включении питания на оборудование подается мощный электрический импульс, который может стать причиной выхода из строя диодов выпрямительного блока. Чтобы этого не произошло, ток подается через резистор на электролитические конденсаторы, которые начинают заряжаться. При достижении конденсаторами полного заряда и перехода устройства в штатный режим работы замыкаются контакты электромагнитного реле и ток начинает поступать на диоды выпрямителя, уже минуя резистор.

Выходные дроссели на плате сварочного инвертора

Выходные дроссели на плате сварочного инвертора

Работой всех элементов такого сварочного аппарата, отличающегося компактными габаритами, небольшим весом и высокой мощностью, управляет специальный ШИМ-контроллер. Электрические сигналы поступают на контроллер от операционного усилителя, питающегося выходным током самого инвертора. На основе характеристик этих сигналов котроллер формирует корректирующие выходные сигналы, которые могут подаваться на диоды выпрямителя и транзисторы инверторного блока – генератора высокочастотных электрических импульсов.

Кроме основных, современные сварочные инверторы обладают еще целым перечнем полезных дополнительных опций. К таким характеристикам, которые значительно облегчают работу с устройством и дают возможность получать качественные, надежные и красивые сварные соединения, следует отнести форсирование сварочной дуги (быстрый розжиг), антизалипание электрода, плавную регулировку сварочного тока, наличие системы защиты от возникающих перегрузок.

Монтажная плата с основными элементами инвертора

Монтажная плата с основными элементами инвертора

Целесообразность использования инверторов и их основные недостатки

Широкое применение сварочных инверторов объясняется целым рядом весомых преимуществ, которыми они обладают.

  • Устройства данного типа отличаются высокой мощностью и производительностью.
  • Сварной шов, формируемый с использованием инверторов, характеризуется высоким качеством и надежностью.
  • Наряду с высокой мощностью, устройства данного типа отличаются компактными размерами и небольшим весом, что дает возможность легко переносить их в то место, где будут выполняться сварочные работы.
  • Сварочные инверторы обладают большим КПД (порядка 90%), потребляемая электрическая энергия используется в них эффективнее, чем в трансформаторах.
  • Благодаря высокому КПД такие аппараты отличаются экономичным расходованием потребляемой электроэнергии.
  • В процессе выполнения сварочных работ с помощью инвертора расплавленный металл разбрызгивается незначительно, что отражается на более рациональном потреблении расходных материалов.
  • Инверторы обеспечивают возможность плавной регулировки сварочного тока.
  • Благодаря наличию в таких устройствах дополнительных опций уровень квалификации сварщика почти не влияет на качество выполнения работ.
  • Широкая универсальность инверторов упраздняет вопрос о том, какой аппарат выбрать для выполнения сварки по различным технологиям.

Инверторные устройства выбирают в том случае, когда нужен аппарат, характеристики которого обеспечивают высокую стабильность горения сварочной дуги в любой ситуации. При использовании инверторов не возникает вопрос и о том, какой электрод выбрать для выполнения сварочных работ, так как с помощью этого оборудования можно варить металл электродами любого типа.

Конечно, недостатки у инверторов тоже есть, но их не так много. Сюда следует отнести достаточно высокую стоимость таких устройств, по сравнению с обычными сварочными трансформаторами. Дороги такие устройства и в ремонте, который чаще всего связан с необходимостью замены мощных транзисторов (их стоимость может составлять до 60% цены всего аппарата).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector