Регулятор вращения оборотов вентилятора. Управляем кулером (термоконтроль вентиляторов на практике). Схема регулятора скорости вентилятора для уменьшения шума
Регулятор вращения оборотов вентилятора. Управляем кулером (термоконтроль вентиляторов на практике). Схема регулятора скорости вентилятора для уменьшения шума
Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?
Когда мастера применяют кулеры для поделок, возникает необходимость управления скоростью вращения. Для этого существуют , но тогда необходим компьютер. Для автономной работы вентилятора требуются аппаратные средства. На канале SamChina показали интересный вариант решения вопроса.
Регулятор оборотов на 4 вентилятора. С приятной синей подсветкой. 4 разъема. Крепежные элементы. Продается в этом китайском магазине (искать реобас).
Попробуем собрать композицию из нескольких вентиляторов от персонального компьютера и включить.
Подключим к стандартному блоку питания ПК. Смотрите тест на видео.
На канале RETROREMONT показали, как спаять простейшую схему для регулировки оборотов вентилятора. Можно применять кулер для охлаждения блока питания, на простой вытяжке. Для этого нужна простая схема. Всего 3 детали.
Переменное сопротивление от 680 до 1 килоом. Транзистор кт 815 – 817- 819. Резистор 1 кОм. Соберем схему и испытаем в работе.
Вторая схема регулятора
В этом видео уроке представлены два варианта, позволяющих регулировать скорость вращения вентилятора персонального компьютера. Используются аппаратные средства, то есть с применением микроэлектроники. В обоих случаях используются кулеры от системных блоков.
Первый вариант. Этот вентилятор питается от напряжения 12 вольт. Его подключаем через схему. Блок питания, который применяется здесь, на 12 вольт, его используют в свечах.
Ролик канала ServLesson.
Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.
По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова . Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1- VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.
Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.
Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру на ощупь можно, только выключив компьютер.
Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).
Рис.3
Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.
Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.
Рис.4
Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.
Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в . Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник . Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6
Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.
Схема
Изготовление регулятора
После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.
Настройка
Простая и надёжная конструкция автоматического регулятора оборотов вращения компьютерного вентилятора (кулера).
Данная конструкция является вариантом предыдущей. Несущественно изменена схема и плата переработана для того, чтобы устройство можно было просто втыкать в разъём «FAN» материнской платы компьютера.
В качестве датчика используется терморезистор 10K. Такие ставят, к примеру, на электронные автомобильные термометры. Характеристика должна быть такова, чтобы сопротивление его уменьшалось с увеличением температуры.
При низкой температуре вентилятор запитан через резистор R8. Если обороты вашего вентилятора слишком малы при использовании номинала 180 ом, его можно уменьшить до 100.
Резистором R3 (470 ом) выставляется порог (уровень температуры) при котором регулятор начинает добавлять обороты вентилятора. Регулировку лучше производить так — нагреть датчик до температуры, при которой начинает требоваться увеличение оборотов, и потенциометром найти точку, при которой светодиод начинает едва светить. Это и будет порогом регулировки.
При помощи потенциометра R4 выставляется «крутизна регулировки». То есть определяется, к какой температуре обороты вентилятора достигнут максимальной величины.
Печатная плата устройства такова:
А вот и устройство в сборе. Разводка платы позволяет контролировать обороты вентилятора средствами материнской платы (для 3-х проводных вентиляторов).
Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).
Схема регулятора оборотов вентилятора.
Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.
В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.
- В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
- Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
- Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.
Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:
регулятор оборотов
Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.
Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 — 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 — 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.
Высокоэффективный автоматический контроллер вентиляторов своими руками
Для снижения шума системного блока в режиме простоя или сидения в чате или лазании в инете по ночам предлагаю схему регулятора оборотов вентиляторов, основными преимуществами которой являются: высокая чувствительность, малая инерционность и гибкость настроек. Опробованные мной готовые регуляторы и собранные по предлагаемым в Интернете простым схемкам не устраивали меня в основном из-за их низкой чувствительности и вследствие это — малого диапазона регулировки оборотов вентиляторов. Будем делать свою схему!
Схема собрана на операционном усилителе и составном транзисторе средней мощности, который обеспечивает ток в нагрузке до 1 Ампера — это позволяет подключить к одному регулятору до 5 вентиляторов суммарной нагрузкой до 12 Вт.
Назначение подстроечных резисторов:
R4- регулировка минимальной температуры, при которой стартуют вентиляторы. (смещение регулировочной характеристики по оси « обороты»)
R6- регулировка температуры, при которой вентиляторы выходят на полные обороты. ( наклон регулировочной характеристики, ее крутизну)
Замена элементов: Операционный усилитель- К140УД17, ОР-07С, 544уд2
Транзистор- оптимально применить составной «дарлингтон» из серии кт 972 с любым буквенным индексом. Очень хорошие хорошие результаты показали транзисторы BD 677a. Радиатор для транзистора не нужен, если конечно не будем пропеллер от кукурузника цеплять :).
Терморезистор — желательно применять миниатюрный, номиналом от 10 до 100 КОм, изолировать его лучше всего методом погружения терморезистора в эпоксидную смолу — получается тонкий и прочный изоляционный слой с малой тепловой инерционностью.
Может понадобиться подбор R2 в зависимости от параметров применяемого терморезистора. Сопротивление этого резистора должно составлять примерно 1/3 сопротивления терморезистора при температуре 25°С. Можно поступить иначе: подбираем такой номинал R2, при котором напряжение на вентиляторе составляет около 5 Вольт (при средних положениях подстроечных резисторов R4 и R6) при температуре 36.6 °С (нагреваем терморезистор пальцами). Монтаж можно выполнить на небольшой макетной печатной плате.
Спаяли? Не расслабляемся — начинается самое главное и трудное – настройка! Так как количество и мощность вентиляторов сильно влияют на настройки, рекомендую настраивать регулятор с теми вентиляторами, которые будут использоваться в дальнейшем. Запитывать схему во время настройки категорически рекомендую от отдельного блока питания на 12 Вольт, желательно стабилизированного.
Подобираем резистор R2(см выше), подстроечники в среднем положении.
Подносим датчик к паяльнику на расстояние 1-2 см- вентилятор должен сразу выйти на полные обороты (около 11 Вольт на нем) — перемещаем датчик в поток воздуха — вентилятор должен практически остановиться через 20-30 сек (около 4 Вольт). Работает? Ура! Поехали дальше…
Нагреваем датчик до температуры около 47-49 о С — я прижал его к батарее (она не очень горячая у меня, где-то так и есть — под 50 градусов Цельсия). Ставим R6 в макс положение (вентилятор должен на полную крутиться) и постепенно уменьшаем сопротивление до тех пор, пока напряжение на кулере не начнет уменьшаться, после чего чуть-чуть (!) поворачиваем подстроечник назад.
Берем датчик в руку (36,6 о С) — и уже резистором R4 выставляем пороговое напряжение на кулере — он должен только только начинать вращаться.
Повторяем п. 3, затем п.4. Это предварительная настройка.
Окончательная настройка производится после полной сборки системы — для удобства советую подпаять два провода к контактам платы «+ Фан» и «Земля» и аккуратно вывести их из системника — на них мы будем контролировать тестером напряжение питания кулера.
Обильно смазанный термопастой термодатчик располагаем на радиаторе как можно ближе к ядру процессора .
Включаем компьютер и проверяем, крутятся ли вентиляторы. Они крутиться не должны, если конечно температура в помещении не 35 градусов. По мере прогрева в режиме простоя напряжение на кулерах должно подняться примерно до 5 Вольт.
Закрываем крышку, ждем мин 20-быстро открываем крышку и R4 уменьшаем напряжение до 6 Вольт. Дальше можно ничего не трогать — просто проверяем.
Запускаем тестовую программу — можно из Сандры стресс тест мин на 20, при этом контролируем напряжение на кулере- на максимум оборотов он должен выйти минут через 8-10. Если это происходит гораздо быстрее — значит вентиляция корпуса недостаточная, нужно ставить более мощный кулер или еще один, или еще что-то думать.
В итоге правильно настроенная система вентиляции корпуса должна работать по следующему алгоритму: при включении крутятся только процессорный и кулер блока питания. По мере прогрева в режиме малой нагрузки начинают вращаться корпусные вентиляторы на малых оборотах — температура стабилизируется на уровне 36-37 градусов в корпусе и 45-48 градусов на ядре процессора. По мере увеличения нагрузки, нагрев внутрикорпусного воздуха должен компенсироваться увеличением производительности именно корпусных кулеров — регулировка на процессорном кулере гораздо менее эффективна — проверено! Смысл гонять раскаленный воздух — шума много, а толку ноль. И, как правило, корпусные вентиляторы более мощные и шумные чем процессорные. Поэтому процессорный запитан у меня от 7 Вольт постоянно, корпусные регулируются, а не наоборот как в большинстве случаев.
Получилась очень тихая система в режиме покоя и просто тихая в режиме макс. нагрузки. Не Zalman Reserator, конечно, но тише чем большинство водянок, виденных мной.
Впоследствии этого мне показалось мало, и я поставил регулировку и на процессорные вентиляторы. Итого сейчас в системнике у меня крутятся два корпусных 80мм Glacial Tech на выдув, два процессорных 80мм Aerocool и один корпусный 80мм Glacial Tech на вдув.
Вот так ЭТО выглядит:
Вот график скорости вращения в зависимости от режимов компьютера (fan 01- корпусные на выдув, fan 02- процессорные, fan 03- корпусный на вдув, не регулируется):
- 1- 3D MARK 03
- 2-Burn к7
- 3- Oпера и закачка файлов по DC++
- 4- Idle
Субьективно в режимах 3 и 4 днем машины вобще не слышно, ночью еле-еле слышен шелест воздуха и грохот винта. Все вопросы по предлагаемому устройству присылайте на E-mail или по аське 324765896. Успехов!
Регулирование оборотов вентилятора радиатора hot end
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Статья относится к принтерам:
Вентилятор hot end один из самых маленьких в 3D принтере, но зачастую является одним из самых шумных вентиляторов. К тому же он обычно подключается напрямую к 12 вольтовой линии блока питания и молотит без перерыва, даже тогда, когда принтер не печатает, а просто включен в розетку.
Китайские вентиляторы, работающие на полных оборотах при простое принтера, приносят нам не только неприятное жужжание, но и осаждают лишнюю пыль на радиаторе hot end.
К тому же, во многих случаях не требуется работа этого вентилятора на полных оборотах. Если запитать его от 5 вольт шум значительно уменьшается, но это заканчивается забитым расплавленным пластиком трактом в процессе печати. Охлаждения перестает хватать во время печати участков с большим количеством откатов или просто из за повышенной температуры в помещении.
Хочу поделиться своим решением регулировки оборотов с обратной связью
1) Позволяет полностью остановить вентилятор, когда радиатор остынет до комнатной температуры
2) Во время печати вентилятор преимущественно работает на низких бесшумных оборотах
3) Обороты повышаются с ростом температуры на радиаторе hot end, например, во время частых откатов или при печати в закрытой камере
Реализация максимально проста и не требует подключения к ШИМ на плате управления (RAMPS) и внесения изменения в прошивку принтера или G-код.
Потребуется два резистора и транзистор, но резисторы не простые:
1) Терморезистор, такой же, как и в нагревательном блоке hot end. Если в хозяйстве его нет, то советую в любом случае заказать десяток — пригодится при ремонте нагревательного блока или стола.
2) Переменный резистор номинала порядка 30КОм
3) n-p-n транзистор, например КТ315, широко распространенный на постсоветском пространстве. Можно мощнее, но слабее нельзя, КТ315 работает на пределе.
Установку рассмотрю на примере китайского e3d v6.
1) На кусочке фольгированного с одной стороны текстолита размером 10 на 8 мм или в виде ‘вороньего гнезда’ собирается схема.
Монтаж на плате фото 1
Монтаж на плате фото 2
2) На ножки терморезистора надеваются изоляторы, хороший вариант использовать тефлоновые, но у меня нормально себя зарекомендовали и обычные кусочки изоляции снятые с проводников витой пары.
3) В двух нижних пластинах радиатора, прямо над нагревательным блоком, просверливается два отверстия диаметром 2.5мм. В одном из отверстий нарезается резьба под М3. Терморезистор крепится по тому же принципу что и в нагревательном блоке — выводы прижаты головкой винтика. Перед установкой терморезистора рекомендую его обильно смазать термопастой.
Отверстия для терморезистора
Терморезистор прижат винтом
4) Подключается вентилятор и питание, переменный резистор выкручивается в положение в котором вентилятор начинает вращаться.
5) Дать радиатору остыть до комнатной температуры и плавно вращая переменный резистор найти положение в котором вентилятор начнет останавливаться и в итоге остановится.
Будьте аккуратны при сборке схемы, особенно в виде ‘вороньего гнезда’, КТ315 легко сжечь подав на базу больше 6 вольт. Пока отлаживался, убил не один транзистор, благо он сам копеечный и ничего за собой не тянет. Лучше изолируйте цепь базы.
Видео демонстрации работы
Характеристики и надёжность
Данный регулятор трудится у меня уже довольно давно, экструдер успел пропустить через себя не один килограмм PLA и ABS. Проверено временем.
Специально для вас провел ‘лабораторную работу’ чтобы снять зависимость тока проходящего через вентилятор и температур радиатора и нагревательного блока. Ток замерял миллиамперметром в разрыве цепи вентилятора, а температура радиатора замерялась термопарой зажатой между второй и третьей пластиной. Каждый из режимов выдерживался более 10 минут.
Т блока (град.С) Т радиатора (град.С) Ток (мА) Комментарий
27 27 10 Вентилятор не вращается
60 35 30 Вентилятор не вращается
100 35 40 Вентилятор начал вращение
150 39 44 Обороты возросли, и будут расти далее
260 49 55 Максимальные обороты не достигнуты (70ма по паспорту вентилятора)
В заключение хочу показать высоту плавления PLA и ABS в тракте экструдера, прутки извлечены после 10 минут простоя в экструдере на 210 и 260 градусов соответственно. Пластик не вытекал под собственным весом т.к. сопло было закрыто столом. Белый кусочек прутка это ABS, зеленый — PLA.
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Кулер с регулировкой оборотов терморезистором
Сейчас онлайн 1 чел.
Регулятор оборотов кулера
Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера, так как шум, издаваемый вентиляторами сильно зависит от его скорости вращения.
В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры кулера, автоматическую регулировку скорости вентилятора, в зависимости от температуры и т.д.).
Уменьшить скорость кулера самостоятельно совсем не сложно,
достаточно изготовить простой регулятор скорости вращения вентилятора, схема которого приведена ниже, при этом не нужно иметь каких либо специальных знаний в области электроники, достаточно уметь владеть паяльником и следовать несложной инструкции.
В этой статье я расскажу Вам как самостоятельно, при минимальных затратах, сделать регулятор оборотов для компьютерного вентилятора, или как его ещё по другому называют — реобас.
Схема регулятора оборотов вентилятора.
Для начала я приведу на рисунке принципиальную схему регулятора оборотов вентилятора:
Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор. Эта схема — как бы, регулятор напряжения, подаваемого на двигатель вентилятора, изменяя напряжение, Мы изменяем частоту вращения вентилятора. При этом у нас появляется возможность уменьшать скорость вращения вентилятора кулера, что приводит к снижению шума, издаваемого им.
В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе может произойти ситуация, при которой неопытный пользователь поставит низкое напряжение на вентиляторе, при котором он будет продолжать крутиться на маленьких оборотах, но которого будет недостаточно для его запуска при включении.
- В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
- Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
- Постоянный резистор может быть любого типа и мощности (но чем меньше, тем лучше), главное, что бы он имел сопротивление 1 или 1.2 кОм.
Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто (см. фото):
Подключается наш регулятор оборотов в разрыв красного провода питания вентилятора кулера (цепь +12В), как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких 4-х выводных плюс питания на них подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.
Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.
Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 — 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 — 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.
Так как вентиляторов в системном блоке несколько, то и таких регуляторов оборотов, можно изготовить, столько, сколько Вам необходимо. Разместив их рядом, Вы сможете с удобством управлять скоростью вращения вентиляторов, а соответственно и издаваемым шумом системного блока, таким образом, получатся бесшумные вентиляторы.
Обновить Всего комментариев: 559