Virbactd.ru

Авто шины и диски
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование частоты оборотов электродвигателя с помощью частотных преобразователей

Регулирование частоты оборотов электродвигателя с помощью частотных преобразователей

Частотные преобразователи применяются для плавной регулировки скорости вращения электродвигателей, а также для их защиты от перегрева и перегрузок. Эти устройства обеспечивают плавный пуск и торможение электродвигателей.

Используя частотник для электродвигателя, принцип работы которого заключается в эффективном способе управления напряжением, можно будет уже не беспокоиться за производственный или ремонтный процесс, осуществляемый соответствующим агрегатом — все будет находиться под контролем частотного преобразователя. В процессе своей работы частотник способен создавать выходное импульсное напряжение заданной частоты в диапазоне от нуля до шестисот герц. Частотное регулирование электродвигателей позволяет добиваться изменения их скорости вращения по заданным критериям. В современных моделях частотников может использоваться и бездатчиковый способ векторного регулирования, когда на валу электродвигателя нет датчика скорости, а сама скорость изменяется лишь в небольших диапазонах. Такого вида частотный регулятор для электродвигателя обычно применяется при управлении низковольтными двигателями переменного тока. В любом случае следует выбирать тот частотный преобразователь, который будет соответствовать мощности и условиям работы электродвигателя.

За счет преобразователя могут контролироваться самые разные параметры электродвигателя — например, это настройка крутящего момента, выходной мощности, изменение напряжения, скорости вращения вала и многое другое. Как видим, частотное регулирование электродвигателей — это очень широкое понятие, и поэтому оно может быть совершенно разным в зависимости от конкретной ситуации. Надо заметить, что частотник также еще позволяет экономить электроэнергию при переменном токе; к тому же это устройство, без сомнения, повышает в целом и срок работы электродвигателя. Получается, что устройство частотного регулирования оборотов электродвигателей — очень важное и нужное средство для любого электродвигателя.

Частотные преобразователи могут использоваться на конвейерах различных видов, в подъемном оборудовании (на кранах и в лифтовых системах), в центробежных насосах, вентиляторах и на металлообрабатывающем оборудовании. Частотный регулятор оборотов электродвигателя — неотъемлемый компонент на любом производстве, так как даже в экономическом плане их использование окупает себя на все сто процентов. Ведь частотники помогают существенно снижать расходы на обслуживание электродвигателей и приводных механизмов. Что и говорить про оптимизацию всего рабочего процесса с помощью частотника. Например, при помощи дополнительных входов управления частотного привода можно синхронизировать различные процессы на конвейере, а также задавать соотношения изменения одних показателей в зависимости от других — например, сделать зависимой скорость вращения шпинделя станка от скорости подачи резца. То есть в результате нагрузки на резец в данном случае подача будет уменьшена.

Частотные преобразователи

Danfoss_VLT_micro_drive_FC51
Micro Drive FC 51 0.75-18.5кВт
Встроенный ПИД-регулятор. Интерфейс RS-485 FC-Protocol, Modbus RTU
_Danfoss_VLT_micro_drive_FC102
HVAC Drive FC 102 22-45кВт
Встроенный PID-регулятор. Интерфейс RS-485 FC-Protocol, Modbus RTU

Читайте так же:
Клапан регулировки давления митсубиси фусо файтер

Преобразователи частоты IDS-Drive серия Z и B

preobrazovateli_chastoti_IDS_Drive_Z
IDS-Drive Z 1ф 220В AC
Встроенный PID-регулятор. Интерфейс RS-485
preobrazovateli_chastoti_IDS_Drive_Z
IDS-Drive Z 3ф 380В AC
Встроенный PID-регулятор. Интерфейс RS-485
preobrazovateli_chastoti_IDS_Drive_B
IDS-Drive B 1ф 220В AC
Встроенный PID-регулятор. Интерфейс RS-485
preobrazovateli_chastoti_IDS_Drive_B
IDS-Drive B 3ф 380В AC
Встроенный PID-регулятор. Интерфейс RS-485

Частотный преобразователь (частотник) — описание и применение

Частотный преобразователь – техническое оборудование, способное преобразовывать входные сетевые параметры (трёхфазный или однофазный переменный ток частотой 50/60 Гц) в выходные параметры на различных частотах (соответственно в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц).

Преобразователь частоты применяют для плавного запуска электродвигателя и регулирования его оборотов. Изменяя частоту и напряжение, частотник способен плавно регулировать скорость вращения асинхронного двигателя (АД). При наличии реверса, появляется возможность изменять направление вращения двигателя.

    Регуляторы оборотов подразделяются на:

Частотные преобразователи Danfoss VLT Drives

Компания Danfoss (Данфосс) предлагает широкую серию преобразователей частоты VLT: универсального, общепромышленного и специализированного применения для систем вентиляции и кондиционирования, отопления и водоснабжения.

Частотные регуляторы Danfoss VLT позволяют регулировать обороты и одновременно осуществлять защиту электродвигателя, оптимизировать энергопотребление, а так же проводить мониторинг всей системы в целом.

Преобразователи Danfoss VLT Micro Drive FC-051

Частотники Danfoss VLT серии Micro Drive FC51 являются универсальными устройствами, которые могут управлять электродвигателями переменного тока мощностью до 22 кВт. Особенностью серии FC51 являются компактные габариты, малый вес и доступные цены, при этом данные преобразователи, благодаря применению высококачественных компонентов и фирменных технических решений VLT, являются исключительно надежным.

Управление скоростью вращения однофазных двигателей

Изменение оборотов асинхронного двигателя

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Схема обмоток конденсаторного электромотораКонденсаторный двигатель с фазосдвигающей обмоткой

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Читайте так же:
Как прописать сервер синхронизации времени

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Регулировка скорости асинхронного двигателя

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

      Недостатки:

          • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
          • все недостатки присущие регулировке напряжением

          Регулирование напряжением скорости вращения двигателяУправление скоростью двигателя трансформатором

          Тиристорный регулятор оборотов двигателя

          В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

          Принципиальная электронная схема регулятора оборотов двигателя вентилятора

          Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

          Таким образом изменяется среднеквадратичное значение напряжения.

          Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

          Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

          Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

          • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
          • добавляют на выходе конденсатор для корректировки формы волны напряжения
          • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
          • используют тиристоры с током в несколько раз превышающим ток электромотора

          Достоинства тиристорных регуляторов:

              • низкая стоимость
              • малая масса и размеры

              Недостатки:

                  • можно использовать для двигателей небольшой мощности
                  • при работе возможен шум, треск, рывки двигателя
                  • при использовании симисторов на двигатель попадает постоянное напряжение
                  • все недостатки регулирования напряжением

                  Используется для изменения оборотов вентилятораУстройство тиристорного регулятора

                  Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

                  Транзисторный регулятор напряжения

                  Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

                  Электронный трансформатор для двигателя вентилятора

                  Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

                  Электронная схема трансформатора регулировки вращения двигателя

                  Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

                  Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

                  Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

                  Плюсы электронного автотрансформатора:

                        • Небольшие габариты и масса прибора
                        • Невысокая стоимость
                        • Чистая, неискажённая форма выходного тока
                        • Отсутствует гул на низких оборотах
                        • Управление сигналом 0-10 Вольт

                        Слабые стороны:

                              • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
                              • Все недостатки регулировки напряжением

                              Частотное регулирование

                              Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

                              Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

                              На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

                              Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

                              Однофазные двигатели могут управляться:

                              • специализированными однофазными ПЧ
                              • трёхфазными ПЧ с исключением конденсатора

                              Преобразователи для однофазных двигателей

                              В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

                              Это модель Optidrive E2

                              Частотный преобразователь для однофазных двигателей

                              Для стабильного запуска и работы двигателя используются специальные алгоритмы.

                              При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

                              f — частота тока

                              С — ёмкость конденсатора

                              В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

                              Преобразователь частоты для однофазного двигателя

                              Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

                              Преимущества специализированного частотного преобразователя:

                                    • интеллектуальное управление двигателем
                                    • стабильно устойчивая работа двигателя
                                    • огромные возможности современных ПЧ:
                                      • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
                                      • многочисленные защиты (двигателя и самого прибора)
                                      • входы для датчиков (цифровые и аналоговые)
                                      • различные выходы
                                      • коммуникационный интерфейс (для управления, мониторинга)
                                      • предустановленные скорости
                                      • ПИД-регулятор

                                      Минусы использования однофазного ПЧ:

                                            • ограниченное управление частотой
                                            • высокая стоимость

                                            Использование ЧП для трёхфазных двигателей

                                            Частотный преобразователь Тошиба

                                            Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

                                            Из однофазного двигателя удаляют конденсатор

                                            Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

                                            Расположение обмоток

                                            Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

                                            В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

                                            При работе без конденсатора это приведёт к:

                                            • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
                                            • разному току в обмотках

                                            Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

                                            Преимущества:

                                                    • более низкая стоимость по сравнению со специализированными ПЧ
                                                    • огромный выбор по мощности и производителям
                                                    • более широкий диапазон регулирования частоты
                                                    • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

                                                    Недостатки метода:

                                                    Регулировка оборотов электродвигателей

                                                    С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве Регулировать обороты, просто понижая питающее напряжение, не имеет смысла — электродвигатель резко уменьшает обороты, теряет мощность и останавливается Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя В большинстве случаев в электроинструменте и других приборах применены универсальные коллекторные электродвигатели с последовательным возбуждением. Они хорошо работают как на переменном, так и на постоянном токе. Особенностью работы коллекторного электродвигателя является то, что при коммутации обмоток якоря на ламелях коллектора во время размыкания возникают импульсы противо-ЭДС самоиндукции. Они равны питающим по амплитуде, но противоположны им по фазе. Угол смещения противо-ЭДС определяется внешними характеристиками электродвигателя, его нагрузкой и другими факторами. Вредное влияние противо-ЭДС выражается в искрении на коллекторе, потере мощности двигателя, дополнительном нагреве обмоток. Некоторая часть противо-ЭДС гасится конденсаторами, шунтирующими щеточный узел.

                                                    Рассмотрим процессы, протекающие в режиме регулирования с ОС, на примере универсальной схемы (рис 1). Резистивно-емкостная цепь R2-R3-C2 обеспечивает формирование опорного напряжения, определяющего скорость вращения электродвигателя. При увеличении нагрузки скорость вращения электродвигателя падает, снижается и его крутящий момент. Противо-ЭДС, возникающая на электродвигателе и приложенная между катодом тиристора VS1 и его управляющим электродом, уменьшается. Вследствие этого напряжение на управляющем электроде тиристора возрастает пропорционально уменьшению противо-ЭДС. Дополнительное напряжение на управляющем электроде тиристора заставляет его включаться при меньшем фазовом угле (угле отсечки) и пропускать на электродвигатель больший ток, компенсируя тем самым снижение скорости вращения под нагрузкой. Существует как бы баланс импульсного напряжения на управляющем электроде тиристора, составленного из напряжения питания и напряжения самоиндукции двигателя. Переключатель SA1 позволяет при необходимости перейти на питание полным напряжением, без регулировки Особое внимание следует уделить подбору тиристора по минимальному току включения, что обеспечит лучшую стабилизацию скорости вращения электродвигателя

                                                    Вторая схема (рис 2) рассчитана на более мощные электродвигатели, применяемые в деревообрабатывающих станках, шлифмашинах, дрелях. В ней принцип регулировки остается прежним. Тиристор в данной схеме следует установить на радиатор площадью не менее 25 см 2 .

                                                    Для маломощных электродвигателей и при необходимости получить очень малые скорости вращения, можно с успехом применить схему на ИМС (рис 3). Она рассчитана на питание 12 В постоянного тока. В случае более высокого напряжения следует запитать микросхему через параметрический стабилизатор с напряжением стабилизации не выше 15В. Регулировка скорости осуществляется путем изменения среднего значения напряжения импульсов, подаваемых на электродвигатель. Такие импульсы эффективно регулируют очень малые скорости вращения, как бы непрерывно «подталкивая» ротор электродвигателя. При высоких скоростях вращения электродвигатель работает обычным образом.

                                                    Весьма несложная схема (рис 4) позволит избежать аварийных ситуаций на линии железной дороги (игрушечной) и откроет новые возможности управления составами. Лампа накаливания во внешней цепи предохраняет и сигнализирует о коротком замыкании на линии, ограничивая при этом выходной ток.

                                                    Когда требуется регулировать обороты электродвигателей с большим крутящим моментом на валу, например в электролебедке, может пригодиться двухполупериодная мостовая схема (рис 5), обеспечивающая полную мощность на электродвигателе, что существенно отличает ее от предыдущих, где работала только одна полуволна питающего напряжения. Диоды VD2 и VD6 и гасящий резистор R2 используются для питания схемы запуска. Задержка открывания тиристоров по фазе обеспечивается зарядом конденсатора С1 через резисторы R3 и R4 от источника напряжения, уровень которого определяется стабилитроном VD8 Когда конденсатор С1 зарядится до порога срабатывания однопереход-ного транзистора VT1, он открывается и запускает тот тиристор, на аноде которого присутствует положительное напряжение. Когда конденсатор разряжается, однопереходный транзистор выключается. Номинал резистора R5 зависит от типа электродвигателя и желаемой глубины обратной связи. Его величина подсчитывается по формуле R5=2/Iм, где Iм — эффективное значение максимального тока нагрузки для данного электродвигателя Предлагаемые схемы хорошо повторяемы, но требуют подбора некоторых элементов в зависимости от характеристик применяемого двигателя (практически невозможно найти подобные по всем параметрам электродвигатели даже в пределах одной серии).

                                                    Литература
                                                    1. Electronics Todays. Int N6
                                                    2. RCA Corp Manual
                                                    3. IOI Electronic Projects. 1977 p 93
                                                    5. G. E. Semiconductor Data Hand book 3. Ed
                                                    6 .Граф P. Электронные схемы. -М Мир, 1989
                                                    7. Семенов И. П. Регулятор мощности с обратной связью. — Радиолюбитель, 1997, N12, С 21.

                                                    голоса
                                                    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector