Virbactd.ru

Авто шины и диски
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт ТНВД Zexel с электронным управлением

Ремонт ТНВД Zexel с электронным управлением

Ремонт ТНВД Zexel с электронным управлением в Нижнем Новгороде

Регулировка и ремонт ТНВД ZEXEL с электронным управлением в Нижнем Новгороде

У Вас дизельный мотор от японских фирм (TOYOTA, NISSAN и пр.)? Появились проблемы с топливным насосом высокого давления? Компания «Агродок» к Вашим услугам. Мы специализируемся на дизельных моторах и осуществляем все виды работ по ТНВД. Учитывая низкие цены на дизтопливо в 90-х годах, в России очень популярны автомобили, оборудованные дизельными моторами. В первую очередь – это относится к крупным авто: внедорожникам и минивенам, так как такое исполнение было куда выгодней бензиновых моделей. Сейчас ситуация по стоимости горючего выровнялась, но любовь граждан к моделям легковых машин с дизельным мотором осталась неизменной. Дизель экономней и более долговечен, но с другой стороны – он сложен в ремонте. Поэтому в случае возникновения проблем мы рекомендуем обращаться на СТО.

Тем более, японские моторы всегда отличались сложными конструкциями. Например, дизелю серии CD20 характерно особенное расположение ТНВД: он устанавливается с тыльной стороны мотора.

Из-за такой уникальной особенности расположения возникает и другая – наличие второго ремня ГРМ (по факту – это ремень не ГРМ, а ТНВД).

Третья особенность – отсутствие меток для установки агрегата. Метки можно найти только на шестерне привода, но они отсутствуют на корпусе мотора, что сильно усложняет обратную сборку. На самом деле, чтобы поставить ремень ТНВД можно воспользоваться одним из двух трудоемких способов: купить оригинальный ремень с метками или отсчитывать пазы от имеющегося ремня. Также, определенные сложности вызывают и разные виды мотора CD20: с одним обводным роликом (без учета привода вакуумного насоса), с двумя. Конструкция на самом деле очень запутана.

При этом с механическими ТНВД работать несколько проще. А вот электронные ТНВД вызывают вопросы. Такие модификации устанавливаются по другим меткам, которые не совместимы с обычными. Проблему можно решить только на СТО, где есть специальные индикаторы для насоса. В ином случае при снятии насоса в своем гараже метки придется искать наугад – методом проб и ошибок. Даже при наличии специального оборудования, нужен опыт в его использовании. Именно поэтому не рекомендуется производить ремонт машин с электронными насосами самостоятельно. Это может привести к целой серии проблем, вплоть до установки машины на простой из-за невозможности починить насос. Тем более, насос в любом случае будет требовать регулировку, которую может провести только специалист на подготовленном компьютерном стенде.

Обслуживание ТНВД

Помимо прочего, недостаток опыта, базы знаний и непрофессиональный подход грозят некачественной диагностикой. Например, уже упомянутый мотор CD20, которым оснащены некоторые Ниссаны, после прогрева перестает держать обороты (начинают «плавать» в пределах до 50 пунктов). При этом стенд не находит неисправностей ТНВД. На всех проверках показывает: «Насос исправен». Более того, винты могут иметь свежие следы краски, оставленные после последней диагностики.

При этом учтите, что просто так снять насос на данном виде мотора – это крайне нецелесообразно. В данном случае только снятие-установка ТНВД своими силами может занять несколько дней.

Неисправности ТНВД: снять насос на данном виде мотора – крайне нецелесообразно

Если обороты так и плавают – причиной может быть блок управления двигателем. Но по факту, там просто нечему ломаться, и тем более, найти новый такой блок – это сложный вопрос.

В то же время, если вовремя не исправить ситуацию, плавающие обороты перерастут в более серьезные неисправности: мотор часто не станет заводиться на горячую. В некоторых случаях хватит и пол оборота замка зажигания, в других – не поможет ничего. Вопрос с потерей мощности уже даже не будет восприниматься как что-то существенное. Нюанс также и в том, что машина с CD20 уникальна по своей сути и для нормального сравнения динамики разгона нужен такой же аппарат. В данном случае потеря мощности и ухудшение динамики разгона – это следствие автоматической трансмиссии, которая в аварийном режиме переходит на D передачу. Но ведь тогда падение мощности – это уже вопросы не к мотору, а к коробке передач, что путает еще больше.

Тут важно учитывать отличия электронных насосов от механических. В первом случае в насосе есть кольцо протечки, управляемое сервоприводом. Его функция – контроль объема впрыска топлива плунжером в форсунки. То есть, все режимы авто (в том числе и запуск) контролируются сервоприводом. Также нужно учесть, что здесь есть электронный регулятор, который никак не влияет на запуск, но отвечает за опережение впрыска.

Конструкция сервопривода на рисунке.

Конструкция сервопривода на рисунке

Кольцо обозначено как CONTROL SLEEVE.

Кольцо обозначено как CONTROL SLEEVE

Сервопривод (выполнен в крышке) цепляет кольцо с помощью круглого штифта.

Сервопривод (выполнен в крышке) цепляет кольцо с помощью круглого штифта

Сервопривод – это уникальная электрическая машина, где есть обмотки, которые под влиянием электрического тока провоцируют создание магнитного поля, действующего на вал со штифтом. За счет сдвига штифта вал способствует созданию поступательного движения кольца на оси плунжера. То есть, если кольцо перемещается вправо, закрывая канал слива в плунжере, количество топлива в магистрали увеличивается. При перемещении кольца влево – объем уменьшается.

На бумаге все проще, чем есть на самом деле. Так, в верхней части сервопривода есть окна для фиксирующих винтов, что немного усложняет задачу по обслуживанию.

В верхней части сервопривода есть окна для фиксирующих винтов, что немного усложняет задачу по обслуживанию

То есть, такие окна, есть не что иное, как регулировка. Это и приводит к первой и самой сложной проблеме: как правильно отрегулировать крышку (сервопривод)? От положения крышки зависит работа всего мотора. Сделать это можно только на стенде. После разборки насоса данную крышку нужно выставить на стартовую подачу. То есть, качество стартовой подачи зависит именно от первого положения крышки. Но сразу при включении зажигания сервопривод начинает двигать кольцо плунжера на стартовый объем впрыска, и при этом положение кольца остается неизвестным. Определить его точное местоположение можно только при фиксации объема впрыска на стартерном режиме. Механические ТНВД в этом отношении проще, там есть винт объема, который крутится в обе стороны. В нашем случае необходимо сдвигать крышку по отношению к корпусу насоса, и тут нюанс в том, что необходима абсолютная точность до десятых миллиметра. Например, превышение значения хотя бы на один мм приведет к отсутствию запуска.

Читайте так же:
Планка для регулировки клапанов изготовить

Вручную, без сканера, установить крышку невозможно.

Вручную, без сканера, установить крышку невозможно

Если крышка не соответствует нужным пределам регулирования хотя бы для стартерного режима – это вызовет ряд вопросов (в том числе и в рабочем режиме). Здесь возможно все, начиная от плавающих оборотов холостого хода и заканчивая ошибкой мотора.

Если у мастера нет опыта, он может изменить положение крышки так, чтобы получить нормальный пуск, но при этом обороты на холостом ходу так и будут плавать. Сброс оборотов станет медленным (то есть, обороты зависают, и крайне неохотно снижаются до уровня холостого хода). Чтобы этого не произошло, регулировщик должен смотреть на вторую строку. При этом стоит только немного подвинуть крышку – обороты придут в норму, но ухудшится пусковой режим. Двигатель перестанет заводиться. При появлении таких вопросов с запуском неквалифицированные сервисы ставят обманку на датчик температуры, и это позволяет обмануть блок управления (он получает данные о низкой температуре, что улучшает старт). Но на самом деле, хороший старт здесь зависит от нормализации динамики разгона.

Чтобы привести в порядок динамику, нужно разобрать вопросы с ТНВД. Но что делать, если он проходит проверку в стендах на сервисе, где показывает, что ТНВД исправен? В данной ситуации владелец пожелал приобрести другой ТНВД. Так как блок управления также протестирован приборами (сигналы соответствуют режимам плавания оборотов), а проблемы своего ТНВД не были исправлены: обороты плавают, старт плохой, на горячем моторе возможно полное отсутствие запуска (особенно характерно нагретому мотору после небольшой стоянки). Новый ТНВД также вызывал вопросы. Всего после месяца эксплуатации ТНВД, при горячем моторе сразу после включения передачи мотор стал глохнуть. Из двух, решено было восстановить новый насос, для этого – заменить плунжер. Но после замены плунжера и регулировки крышки, мотор стал нормально заводиться, а динамика разгона осталась неудовлетворительной. То есть, как уже указано, можно сделать нормальным старт и при этом получить неохотный сброс оборотов, а можно – нормальный сброс оборотов и плохой старт. Не имея базы знаний, опыта и умений, установить крышкой нормальный старт и качественный сброс оборотов невозможно (имеется ввиду хороший старт при пуске на горячую, так как при холодном моторе проблем нет). То есть, при плохом запуске горячего мотора нужно подвинуть крышку для улучшения пуска, но почти всегда это вызывает плавающие обороты и их медленный сброс.

Решение задачи

На рассматриваемых ТНВД есть регулировочное сопротивление (представлено в виде двухконтактного разъема). Во время его снятия сканер сразу находит эту ошибку (такой разъем стоит на многих насосах от японцев). Что же это такое? По факту – это резистор для регулирования обратной связи с сервопозиционером, который находится в крышке. Но это также вызывает ряд сложностей, так как чисто механически, все насосы и сервоприводы отличаются один от другого. На стендах в Японии каждый насос регулируют отдельно и в процессе подбирают к нему свой резистор.

Параметры данного элемента оказывают ключевое влияние на общую работу ТНВД. При несовпадении – возникают описанные выше неисправности.

Параметры данного элемента оказывают ключевое влияние на общую работу ТНВД

Внутри расположен стандартный резистор с мощностью рассеяния до 1 Ватт.

Внутри расположен стандартный резистор с мощностью рассеяния до 1 Ватт

Но само сопротивление настраивается в широком диапазоне. Опять-таки, самостоятельно настроить резистор очень сложно, нужное значение можно определить только путем экспериментов в процессе поездок (чтобы прочувствовать влияние резистора на динамику и качество сброса оборотов). Но подбирать сопротивление для улучшения динамики и приведения в порядок оборотов к уровню холостого хода – это сомнительный вариант. Тем более, оценка по поездке может быть субъективной. Насос должен настраиваться только на стенде. При этом у мастера должен быть опыт в настройке.

Как решает задачу компания «Агродок»? Мы регулируем крышкой пуск на прогретом моторе, установив при этом подстроечный резистор.

Регулируем крышкой пуск на прогретом моторе, установив при этом подстроечный резистор

Далее находим положение для лучшего пуска при условии отсутствия нестабильных оборотов (при этом резистор настраивается на нулевое сопротивление). После этого мотор останавливается на 10 секунд (для инициализации) и повторно заводится. Теперь подстроечник постепенно крутится на повышение сопротивления. При достижении максимума, обороты станут повышаться, а затем – уменьшаться. Далее мастер проверяет данный максимум ближайшими положениями резистора и каждый раз ДВС глушится ровно на 10 сек. перед новым запуском. По окончанию настройки измеряется и подбирается сопротивление.

По необходимости, оно впаивается вместо того, что было.

По окончанию настройки измеряется и подбирается сопротивление

Важное уточнение по поводу сопротивления. При испытаниях можно найти точное значение, вплоть до единицы. Например – 456 Ом. Но именно такое сопротивление найти нереально, так как все виды сопротивлений классифицируют по рядам с определенной разбежкой (минимальная разбежка – 0.5%). То есть, существует фиксированная шкала. Чем выше Ом – тем больше пропуски. Например: 430 и 470, или другой, более точный ряд: 453 и 459. Точного значения 456 не существует в принципе, однако тут нужно учесть, что системам с обратной связью характерно наличие петли регулирования с широкими границами (система подстраивается самостоятельно, главное найти похожее значение). Если у Вас возникли другие неисправности ТНВД – Вы также можете обратиться в компанию «Агродок». Интересующую информацию ищите на странице по ссылке.

Читайте так же:
Юпитер 5 зажигание электронное регулировка

В данном случае нужно подобрать любое ближайшее значение из имеющихся резисторов. Для этого нужен точный омметр и тогда методом перебора можно выбрать подходящее значение. При этом можно подобрать ряд с разбежкой до 10% (чем больше разбежка, тем ниже будет стоить резистор, и тем проще его найти).

Фирма «Агродок» гарантирует, что при использовании данного метода перебора резисторов наши мастера улучшат динамику машины и приведут в порядок обороты. Также улучшится реакция на педаль газа, можно даже провести сравнение мотора с ДВС бензинового типа (также быстро реагирует на подгазовку).

При правильной установке индикатора и определении хода плунжера такая регулировка дарит машине второе дыхание. Вы, как владелец, совершенно точно останетесь довольны результатом. Мы имеет опыт в подстройке всех параметров: установка индикатора, регулировка крышки и поиск нужного резистора. В данной системе важна каждая мелочь. Без качественного определения хода плунжера по индикатору, электронный насос просто не будет работать. При этом, «на глаз», как это могут делать дизелисты на механических насосах, выставить его нельзя. Дело в том, что электроника работает по датчику коленвала (при этом распредвальный стоит в нем) и дизель с данным видом насоса будет звучать всегда одинаково, независимо от смены положений. Правильная установка требует особой точности в работе.

Решим все Ваши вопросы с плохим пуском мотора. Гарантируем, что мотор будет запускаться при любой температуре ДВС (даже при 95 градусах), независимо от времени стоянки авто. Также, ДВС больше не будет зависеть от температуры топлива, а значит, перед датчиком не нужно будет ставить обманку для «снижения» градусов. Улучшим реакцию авто на набор и сброс оборотов.

регулировка SPV дизельных автомобилях тойота 2L-TE и 1KZ-TE

ДИЗЕЛЮ НУЖНО ОПРЕДЕЛЁННОЕ КОЛИЧЕСТВО ТОПЛИВА В ОПРЕДЕЛЁННЫЙ МОМЕНТ ВРЕМЕНИ- ЕСЛИ НЕТ ОДНОГО ИЗ ПАРАМЕТРОВ- ДИЗЕЛЬ НЕ РАЗВИВАЕТ МОЩНОСТЬ.

"малая доза" топлива подаваемая длительный период времени- делает работу мягкой но не эффективной с большим количеством чёрного или сизого дыма.
"большая доза" топлива подаваемая короткий период времени (или нужная доза но очень рано) влечёт к дизельному стуку (дизельной детонации) дизель рокочет (так кстати настроены многие современные дизеля и с характерным рокотом работают чипованные дизеля)

топливо должно подаваться в нужном объёме в требуемый момент, для этого нам требуется правильно настроенные форсунки и SPV, дальше работа будет рассчитана ECU согласно топливной карте

регулировка SPV автомобилей тойота 2L-TE 1KZ-TE
одинакова и заключается уменьшении скважности клапана дозатора расположенного на плунжерной головке ТНВД.

регулировка подачи топлива на дизелях этой серии происходит по ШИМ сигналу, и при высокой скважности клапана нужный объём топлива не может быть подан плунжером на форсунку, а попросту уходит в слив. Для получения максимального КПД от этих двигателей требуется что бы скважность клапана была минимальна, но двигатель при этом не уходил в #ПСЕВДО-РАЗНОС.

многие ошибочно полагают что уменьшение скважности клапана дозатора влечёт к повышению расхода топлива. НЕТ- это не карбюратор, тут нет богатой и бедной смеси. это дизель- и он либо получит свою дозу топлива и разовьёт требуемый КПД, либо ему будет не хватать топлива и он будет расходовать его не эффективно.

эта регулировка требуется периодически, если её не делать несколько лет- то эффект будет сильно заметен.

также регулировка требуется после ремонта или замены ТНВД, Форсунок, ремонта Двигателя, промывки форсунок и ТНВД жидкостью Wynn’s diesel purge

я проверяю регулировку примерно раз в год, а увеличиваю подачу раз в 2 года на примерно 1/8 оборота.

SPV (клапан дозатор) расположен в верхней части ТНВД (зелёный на картинке) и регулировочный винт на нём закрыт колпачком, колпачок нужно сдёрнуть плоскогубцами.

перед началом регулировки
1) нужно проверить уровень и состояние моторного масла, охлаждающей жидкости, при необходимости довести уровень до нормы. проверить исправность и отсутствие сильной утечки масла с наддувной части турбины (дизель может работать на масленом тумане вылетающем из турбины и уйти в разнос)
2) хорошо прогреть двигатель (должны прогреты быть не только ОЖ, но также масло и топливо), это потребует около 1 часа работы на ХХ или поездки в 5-10 км пути.

регулировка проводится при выключенных энергопотребителях (свет, отопитель, кондиционер, магнитола) коробка передач в положении N или P.

ОБЯЗАТЕЛЬНО ВЫКЛЮЧИТЬ ТУРБОТАЙМЕР. с работающим турботаймером регулировка невозможна и может привести к разрушению двигателя.

нам потребуется накидной ключ на 10, плоская отвёртка (порой головка на 5мм с длинным удлинителем)

ЧАСОВОЙ СТРЕЛКЕ- УВЕЛИЧИВАЕМ ПОДАЧУ
ПРОТИВ ЧАСОВОЙ СТРЕЛКИ — УМЕНЬШАЕМ ПОДАЧУ

1) запускаем двигатель

2) ключом мы ослабляем гайку на 10 на клапане

3) поворачиваем отвёрткой регулировочный винт на 90 градусов (1/4 оборота) по часовой стрелке

4) резким нажатием на педаль газа (или поворотом Дроссельной Заслонки) поднимаем обороты до 3500-4000 и резко сбрасываем газ. обороты должны вернуться на ХХ без существенных задержек (падение оборотов зачастую имеет ступенчатый характер, сначала обороты падают до 2500 чуть зависают и уходят на ХХ. это связано с настройками ECU по коррекции по наддуву турбины). ПОВТОРИТЬ ОПЕРАЦИЮ 4 НЕ МЕНЕЕ 3 РАЗ.

5.1) если обороты вернулись на ХХ — то требуется ещё увеличить подачу. и повторять операции 3 и 4 до тех пор пока дизель не пойдёт в #ПСЕВДО-РАЗНОС (это работа двигателя на режиме около 3500 оборотов при полностью отпущенной педали газа, это вызвано завышенной дозировкой подачи топлива, двигатель перестаёт реагировать на команду замка зажигания OFF продолжая работать пир полностью отключенном электро питании)

Читайте так же:
Как регулировка клапана давления воды в квартире

5.2) Дизель ушёл в #ПСЕВДО-РАЗНОС- спокойно, без паники, это нормальный этап регулировки SPV. нужно отвернуть регулировочный винт ПРОТИВ ЧАСОВОЙ СТРЕЛКИ (УБАВИТЬ ПОДАЧУ) на 45 градусов (1/8 оборота), обороты должны вернуться на ХХ. если обороты всё ещё высоки. то убавить подачу ещё на 45 градусов (1/8 оборота)

6) после того как обороты вернулись на ХХ повторить операцию 4 не менее 5 раз, и 1 раз резким нажатием раскрутить дизель до красной зоны.

7) после того как мы убедились что дизель не идёт в #ПСЕВДО-РАЗНОС, несильно затянуть гайку на 10 удерживая от проворота винт отверткой

8) сделать тестовый заезд имея под рукой ключ и отвертку, зачастую дизель может уйти в #ПСЕВДО-РАЗНОС при тестовом заезде по причине того что не был до конца прогрет.

9) затянуть контрящую гайку и поставить метку краской на резьбе регулировочного винта, установить колпачок.

Электронные системы управления рядными ТНВД

Рядный ТНВД с электронным управлением . Общий вид рядного ТНВД с электронным управлением: 1 – гильза; 2 – втулка управления; 3 – рейка подачи топлива; 4 –плунжер; 5 – кулачковый вал; 6 – электромагнитный клапан начала подачи топлива; 7 – вал управления регулирующей втулкой; 8 – электромагнитный регулятор количества топлива; 9 – индуктивный датчик положения рейки; 10 – вилочное соединение; 11 – диск; 12 – топливоподкачивающий насос.

Как и в обычном рядном ТНВД, оснащенном механическим регулятором, количество впрыскиваемого топлива является функцией положения управляющей рейки подачи топлива 3 и частоты вращения вала привода ТНВД. Управление рейкой осуществляется с помощью специального электромагнитного регулятора количества топлива 8, присоединенного непосредственно к ТНВД. Электромагнитный регулятор состоит из катушки и сердечника, воздействующего на рейку ТНВД.

Положение рейки насоса определяется индуктивным датчиком положения рейки 9, закрепленным на ней. В катушку электромагнитного регулятора, в зависимости от сигналов входных датчиков температуры двигателя, частоты вращения вала насоса, положения педали управления рейкой и др. от блока управления поступает ток возбуждения различной величины. При этом сердечник регулятора, втягиваясь под воздействием магнитного поля, воздействует на рейку насоса преодолевая усилие пружины, изменяя количество впрыскиваемого топлива.

С увеличением силы тока поступаемого от блока управления, сердечник, втягиваясь на большую величину и воздействуя на рейку, увеличивает подачу топлива. При отключении соленоида пружина прижимает рейку в положение остановки двигателя и прекращает подачу топлива.

На кулачковом валу ТНВД устанавливается зубчатое колесо, которое при вращении подает импульсы на индуктивный измерительный преоб­разователь. Электронный блок управления использует импульсные ин­тервалы для вычисления частоты вра­щения коленчатого вала двигателя.

Датчик положения рейки подает сигналы для различных устройств на двигателе и автомобиле:

  • сигнал о моменте переключения передач для гидравлической коробки передач; сигнал для подачи максимальной порции топлива скоординированной с давлением наддува для соблюдения норм на дымность отработавших газов;
  • сигнал о нагрузке, как указание момента переключения для переключения передач в механической коробке передач;
  • сигнал для измерения расхода топлива;
  • сигнал для запуска рецеркуляции отработавших газов;
  • сигнал диагностики и др.

Датчик положения рейки 1 – контрольная катушка; 2 – сердечник; 3 – короткозамкнутое подвижный контур; 4 – рейка; 5 – лыска; 6 – возвратная пружина; 7 – измерительная катушка; 8 – магнитопровод; 9 – неподвижный контур

Датчик состоит из пластинчатого стального сердечника 2 с двумя наружными открытыми концами. На одном конце закреплена измерительная катушка 7, которая запитывается переменным током 10 кГц, на другом конце контрольная катушка 1. Короткозамкнутый подвижный контур 3, предназначенный для регистрации хода рейки крепится к ней. Датчик хода рейки соединен с блоком управления.

Принцип работы датчика состоит в том, что короткозамкнутый неподвижный контур 9, окружающее конец сердечника, экранирует переменное магнитное поле (индукцию), вырабатываемое контрольной катушкой 1. Распространение магнитного поля ограничивается пространством между катушкой и короткозамкнутым кольцом. Учитывая то, что короткозамкнутое подвижное кольцо перемещается вместе с рейкой и изменяет своё положение относительно измерительной катушки, магнитное поле воздействующее на измерительную обмотку изменяется. Реагирующая цепь преобразует отношение индукции измерительной катушки 7 к индукции контрольной катушки 1 в отношении напряжений, которые пропорциональны ходу рейки. Величина измеряемого напряжения постоянно сравнивается с напряжением контрольной катушки. Датчик информирует о текущем положении рейки с точностью 0,2 мм.

Электронный блок управления сравнивает частоту вращения и другие параметры работы двигателя с целью определения оптимального ко­личества подаваемого топлива (выра­жаемого как функция положения рей­ки). С помощью электронного контрол­лера сравнивается положение рейки насоса с конкретной точкой для опре­деления значения тока возбуждения соленоида, который сжимает возврат­ную пружину. Когда отклонения опре­деляются, регулируется ток возбужде­ния, обеспечивая смещение рейки насо­са к более точному положению.

Подача топлива к форсункам принципиально не отличается от механических ТНВД. Однако в насосах с электронным управлением отсутствует муфта опережения впрыска и в них угол опережения впрыска управляется по сигналам, подаваемым от блока управления в электромагнитный клапан начала подачи топлива. В зависимости от величины силы тока поступающего в катушку электромагнитного клапана начала подачи топлива 6 (рис.), его сердечник, преодолевая сопротивление пружины, втягивается в катушку на определенную величину, поворачивая при этом вал управления 7 регулирующей втулкой. В свою очередь вал управления связан с втулкой управления. При повороте вала управляющая втулка может приподниматься или опускаться. При обесточивании электромагнитного клапана вал под воздействием пружины переводит втулки в верхнее положение (поздний впрыск).

Читайте так же:
Регулируем тормоза на коляске

Начало подачи может регулироваться при изменении положения втулок в пределах до 40° поворота коленчатого вала. Принцип работы прецизионных деталей гильзы, плунжера и управляющей втулки показан на рисунке.

Принцип работы плунжерной пары с управляющей втулкой. a – НМТ плунжера; b – начало подачи топлива; c – завершение подачи топлива; d – ВМТ плунжера; h1 – предварительный ход; h2 – полезный ход; h3 – холостой ход; 1 – нагнетательный клапан; 2 – полость высокого давления; 3 – втулка плунжера; 4 – управляющая втулка; 5 – винтовая канавка плунжера; 6 – распределительное отверстие в плунжере; 7 – плунжер; 8 – пружина плунжера; 9 – роликовый толкатель; 10 – кулачок; 11 – разгрузочное отверстие; 12 – камера низкого давления.

Плунжер кроме обычной спиральной канавки изменяющей подаваемую порцию топлива к форсункам имеет распределительное отверстие 6, которое может быть закрыто или открыто управляющей втулкой 4. При движении плунжера вниз топливо поступает в надплунжерное пространство.

При движении плунжера 7 вверх, до тех пор, пока распределительное отверстие 6 находится в полости всасывания камеры низкого давления 12, давление в полости нагнетания 2 выравнивается с давлением во всасывающей полости через центральный канал.

Как только распределительное отверстие 6 плунжера перекрывается кромкой управляющей втулки 4 полость всасывания и полость высокого давления разобщаются (рис b) и давление в полости нагнетания начинает расти. После того как под воздействием высокого давления открывается нагнетательный клапан 1, давление в трубопроводе высокого давления растет до величины открытия иглы форсунки (начало впрыска).

Впрыск продолжается при движении плунжера вверх пока кромка спиральной канавки 5 не достигнет разгрузочного отверстия 11 (рис. с) в управляющей втулке 4. После этого давление в полостях выравнивается, и нагнетательный клапан 1 под воздействием пружины и давления топлива закрывается.

Регулирование начала впрыска топлива зависит от частоты вращения коленчатого вала, нагрузки на двигатель и его температуры. Начало впрыска топлива зависит от положения управляющей втулки, размещенной в кольцевой выточке гильзы. Изменение начала впрыска происходит одновременно во всех секциях насоса за счет поднятия или опускания управляющих втулок. Начало впрыска топлива зависит от положения управляющей втулки, так как нагнетание может произойти только после перекрытия распределительного отверстия плунжера 6, в противном случае топливо через вертикальный канал и отверстие 6 будет вытесняться полость 12 и давление в надплунжерном пространстве возрастать не будет. В момент перекрытия отверстия 6 полость в надплунжерным пространством становится герметичной и давление топлива начинает резко возрастать, открывая при этом нагнетательный клапан. Если втулка находится относительно отверстия плунжера 6 выше, впрыск начинается позже, так как позже будет перекрываться окно плунжера. При более низком положении втулки относительно окна плунжера перекрытие окна плунжера будет более ранним и впрыск начинается раньше. Ход втулки составляет около 5,5 мм при изменении угла опережения впрыска топлива 12° по углу поворота коленчатого вала.

Регулирование количества подаваемого топлива осуществляется как и у обычных механических ТНВД поворотом плунжера 7, на котором распределительное отверстие 6 соединено с винтовой канавкой 5 плунжера. Если плунжер повернут на небольшой угол, количество подаваемого топлива будет малым, так как спиральная канавка очень быстро после закрытия распределительного отверстие в плунжере 6 управляющей втулкой достигает разгрузочного отверстия 11 втулки. При большем повороте плунжера подача топлива соответственно увеличивается.

Прекращение подачи топлива осуществляется при останове двигателя. При этом плунжер устанавливается в такое положение, при котором в любой позиции между мертвыми точками полости всасывания и нагнетания соединены через центральное отверстие плунжера.

Основные неисправности рядных электронных ТНВД и их причины.

ТНВД дизельного двигателя Д-245 — устройство и регулировки

На двигателе Д-245 автомобилей ЗИЛ-5301 Бычок, ГАЗ-3309, МАЗ-4370 Зубренок устанавливаются ТНВД-773. Топливный насос высокого давления представляет собой блочную конструкцию, состоящую из четырех насосных секций в одном корпусе, имеющую кулачковый привод плунжеров и золотниковое дозирование цикловой подачи топлива.

ТНВД-773 предназначен для подачи в камеры сгорания цилиндров дизеля в определенные моменты времени дозированных порций топлива под высоким давлением. Привод кулачкового вала топливного насоса осуществляется от коленчатого вала дизеля через шестерни распределения.

Взаимное положение шестерни привода топливного насоса и полумуфты привода фиксируется затяжкой гаек, устанавливаемых на шпильки полумуфты. Значение момента затяжки гаек 35…50 Нм.

Топливный насос высокого давления Д-245 объединен в один агрегат с всережимным регулятором и топливоподкачивающим насосом поршневого типа.

Регулятор имеет корректор подачи топлива, автоматический обогатитель топливоподачи (на пусковых оборотах) и пневматический ограничитель дымления (корректор по наддуву). Подкачивающий насос установлен на корпусе ТНВД Д-245 и приводится эксцентриком кулачкового вала.

Рабочие детали насоса смазываются проточным маслом, поступающим из системы смазки дизеля. Слив масла из корпуса насоса осуществляется в картер дизеля. Вновь установленный на дизель насос необходимо заполнить маслом в количестве 200. 250 см3. Заливку масла производить через отверстие слива масла поз.30 (Рис.1).


Рис.1 – Топливный насос ТНВД 773 дизеля Д-245

1 — секция топливного насоса; 2 — табличка; 3 – фланец; 4 – шпонка; 5 – полумуфта привода; 6 – гайка крепления полумуфты; 7 – кулачковый вал; 8 – корпус топливного насоса; 9 – топливоподкачивающий насос; 10 – поддерживающий кронштейн; 11 – болт регулировки пусковой подачи; 12 – рычаг останова; 13 – корпус регулятора; 14 – крышка регулятора; 15 – крышка смотрового люка; 16 – болт регулировки минимальной частоты вращения; 17 – болт регулировки максимальной частоты вращения; 18 – гайка крепления секций топливного насоса; 19 – перепускной клапан; 20 – штуцер подвода топлива; 21– маслопровод; 22 – штуцер отвода топлива от подкачивающего насоса к фильтру тонкой очистки топлива; 23 – болт крепления штуцера подвода топлива к подкачивающему насосу; 24 – корректор по наддуву; 25 – болт штуцера подвода воздуха; 26 – рычаг управления; 27 – пробка винта регулировки номинальной подачи топлива; 28 – пробка спуска воздуха; 29 – электромагнит останова ; 30 – отверстие слива масла.

Читайте так же:
Клапан регулировки давления водопровод

Обслуживание топливного насоса высокого давления ТНВД дизелей Д-245

В процессе эксплуатации топливного насоса высокого давления 773 при износе основных деталей нарушаются его регулировочные параметры. Смазка ТНВД Д-245 централизованная от системы смазки дизеля через специальный маслопровод. Необходимый уровень масла в картере насоса устанавливается автоматически.

Для снижения износов прецизионных деталей не допускается работа ТНВД без фильтрующего элемента или с засоренным фильтром тонкой очистки топлива. Также не допускается работа с топливом, имеющим повышенное содержание воды.

При необходимости, а также через каждые 120 тыс. км пробега необходимо снять насос и проверить его на стенде на соответствие регулировочным параметрам, а также установочный угол опережения впрыска топлива на дизеле. При необходимости, произведите соответствующие регулировки.

Регулировка и контроль ТНВД 773 для установочного угла опережения впрыска топлива на двигателе Д-245

При затрудненном пуске дизеля, дымном выпуске, а также при замене, установке топливного насоса после проверки на стенде через каждые 120 тыс. км пробега или ремонте дизеляобязательно проверьте установочный угол опережения впрыска топлива на дизеле.

Установочный угол опережения впрыска топлива, градусов поворота коленчатого вала для топливного насоса высокого давления ТНВД 773.1111005-20.05 — 2,5±0,5

Проверку установочного угла опережения впрыска топлива для ТНВД 773 двигателя Д-245 производите в следующей последовательности:
— установите поршень первого цилиндра на такте сжатия за 40-50 до ВМТ;
— установите рычаг управления регулятором в положение, соответствующее максимальной подаче топлива;
— отсоедините трубку высокого давления от штуцера первой секции ТНВД и вместо неё подсоедините контрольное приспособление, представляющее собой отрезок трубки высокого давления длиной 100. 120 мм с нажимной гайкой на одном конце и вторым концом, отогнутым в сторону на 150…170° в соответствии с рисунком 24;
— заполните топливный насос топливом, удалите воздух из системы низкого давления и создайте избыточное давление насосом ручной прокачки до появления сплошной струи топлива из трубки контрольного приспособления;
— медленно вращая коленчатый вал дизеля Д-245 автомобилей ЗИЛ-5301 Бычок, ГАЗ-3309, МАЗ-4370 Зубренок по часовой стрелке и поддерживая избыточное давление в головке насоса (прокачивающим насосом), следите за истечением топлива из контрольного приспособления.
— в момент прекращения истечения топлива (допускается каплепадение до 1 капли за 10 секунд) вращение коленчатого вала прекратить;
— выверните в соответствии с рисунком 2 фиксатор из резьбового отверстия заднего листа и вставьте его обратной стороной в то же отверстие до упора в маховик, при этом фиксатор должен совпадать с отверстием в маховике (это значит, что поршень первого цилиндра установлен в положение, соответствующее установочному углу опережения впрыска топлива.


Рис.2 — Установка фиксатора в отверстие заднего листа и маховика дизеля Д-245

При несовпадении фиксатора с отверстием в маховике произведите регулировку ТНВД 773, для чего проделайте следующее:
— снимите в соответствии с рисунком 3 крышку люка;
— совместите фиксатор с отверстием в маховике, поворачивая в ту или другую сторону коленчатый вал;
— отпустите на 1. 1,5 оборота гайки крепления шестерни привода топливного насоса;
— при помощи ключа поверните за гайку валик топливного насоса против часовой стрелки до упора шпилек в край паза шестерни привода топливного насоса;
— создайте избыточное давление в головке топливного насоса до появления сплошной струи топлива из трубки контрольного приспособления;
— поворачивая вал насоса по часовой стрелке и поддерживая избыточное давление, следите за истечением топлива из контрольного приспособления;
— в момент прекращения истечения топлива прекратите вращение вала и зафиксируйте его, зажав гайки крепления полумуфты привода к шестерне привода.

Произведите повторную проверку момента начала подачи топлива. Отсоедините контрольное приспособление и установите на место трубку высокого давления и крышку люка.

Заверните в отверстие заднего листа фиксатор.


Рис.3 — Привод топливного насоса ТНВД двигателя Д-245

1 – крышка люка; 2 – гайка; 3 – шпилька; 4 – гайка специальная; 5 – полумуфта привода; 6 – шестерня привода топливного насоса

Проверка форсунок дизеля Д-245 на давление начала впрыска и качество распыла топлива


Рис.4 – Форсунка двигателя Д-245

1 – корпус форсунки; 2 – шайба регулировочная; 3 – пружина; 4 – штанга форсунки; 5 – проставка; 5 – гайка распылителя; 7 – распылитель; 8 – кольцо уплотнительное.

Проверку форсунок производите через каждые 120 тыс. км пробега. Снимите форсунки с дизеля и проверьте их на стенде. Форсунка топливного насоса ТНВД 773 считается исправной, если она распыливает топливо в виде тумана из всех пяти отверстий распылителя, без отдельно вылетающих капель, сплошных струй и сгущений.

Начало и конец впрыска должны быть четкими, появление капель на носке распылителя не допускается. Качество распыла проверяйте при частоте 60-80 впрысков в минуту.

При необходимости отрегулируйте форсунки изменением общей толщины регулировочных шайб 2 (Рис.4): увеличение общей толщины регулировочных шайб (увеличение сжатия пружины) повышает давление, уменьшение – понижает. Изменение толщины шайб на 0,1мм приводит к изменению давления начала подъема иглы форсунки на 1,3. 1,5 МПа.

Значения давления начала впрыскивания для форсунок: 455.1112010-50 – 24,5 МПа; 172.1112010-11.01 – 25,0. 26,2 МПа. Установите форсунки на дизель. Болты скобы крепления форсунок затягивайте равномерно в 2-3 приема. Окончательный момент затяжки 20. 25 Нм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector